

## SUSTAINABILITY OF BUILT ENVIRONMENT ROLE OF STEEL



Institute for Steel Development and Growth (INSDAG)

## Contents

| CHAPTER 1                                                                   | 1  |
|-----------------------------------------------------------------------------|----|
| INTRODUCTION                                                                | 1  |
| Adverse Environmental Impacts of Built-Environment                          | 2  |
| Resource Depletion                                                          | 2  |
| Waste Generation                                                            | 2  |
| Water Consumption                                                           | 3  |
| Health Issues                                                               | 3  |
| The Whole Life-Cycle Perspective – tackling embodied and operational carbon | 4  |
| CHAPTER 2                                                                   | 5  |
| FEATURES OF A SUSTAINABLE BUILT ENVIRONMENT                                 | 5  |
| Advancing Climate Action                                                    | 5  |
| Enhancing Health and Well-being                                             | 5  |
| Circularity Emphasis                                                        | 5  |
| POLICY MEASURES                                                             | 5  |
| Regulation                                                                  | 6  |
| Information                                                                 | 7  |
| Incentives                                                                  | 7  |
| CHAPTER 3                                                                   | 8  |
| ROLE OF STEEL IN SUSTAINABLE BUILT-ENVIRONMENT                              | 8  |
| Structural Strength                                                         | 8  |
| Durability                                                                  | 8  |
| Lighter Construction Footprint                                              | 8  |
| Recyclability                                                               | 8  |
| Energy Efficiency                                                           | 8  |
| Prefabrication                                                              | 9  |
| Reduced Emissions                                                           | 9  |
| CHAPTER 4                                                                   | 10 |
| STAGES OF SUSTAINABLE BUILT-ENVIRONMENT                                     | 10 |
| CHAPTER 5                                                                   | 11 |
| DESIGN STAGE OF SUSTAINABLE BUILT-ENVIRONMENT                               | 11 |
| Choice of Materials and Type of Steel Used                                  | 11 |
| Recycled Content                                                            | 11 |
| Life Cycle Assessment (LCA)                                                 | 11 |
| Coatings and Finishes                                                       | 11 |
| Corrosion Resistance                                                        | 11 |
| Design for Adaptability                                                     | 11 |
| End-of-Life Considerations                                                  | 12 |
| Environmental Product Declaration (EPD)                                     | 12 |

I

| Indian Steel Producers and their EPD Certified Products | 13 |
|---------------------------------------------------------|----|
| Value Engineering                                       | 13 |
| Cost-effectiveness                                      | 13 |
| Energy Efficiency                                       | 13 |
| Recyclability                                           | 13 |
| Adaptability                                            | 13 |
| Life Cycle Assessment                                   | 13 |
| Design Efficiency                                       | 14 |
| Material Efficiency                                     | 14 |
| Lightweight Design                                      | 14 |
| Modular Design                                          | 14 |
| Integration of Sustainable Systems                      | 14 |
| Life Cycle Assessment                                   | 14 |
| Design for Disassembly/ Design for Deconstruction (DfD) | 14 |
| Reuse of Steel and Design for Deconstruction (DfD)      | 14 |
| CHAPTER 6                                               | 17 |
| CONSTRUCTION STAGE OF SUSTAINABLE BUILT-ENVIRONMENT     | 17 |
| Water Usage during Construction                         | 17 |
| Planning and Site Layout                                | 17 |
| Efficient Construction Methods                          | 17 |
| Water-Efficient Equipment and Processes                 | 17 |
| On-Site Water Management                                | 17 |
| Water Recycling and Treatment                           | 17 |
| Awareness and Education                                 | 18 |
| Reduced disruption during construction process          | 18 |
| Off-Site Fabrication                                    | 18 |
| Modular Construction                                    | 18 |
| Just-in-Time Delivery                                   | 18 |
| Noise and Dust Control Measures                         | 19 |
| Efficient Construction Scheduling                       | 19 |
| Community Engagement                                    | 19 |
| Environmental Monitoring                                | 19 |
| Reducing Construction Noise with Steel Structures       | 20 |
| Off-Site Fabrication                                    | 20 |
| Precision and Accuracy                                  | 20 |
| Modular Construction                                    | 20 |
| Noise Control Measures                                  | 20 |
| Construction Scheduling                                 | 20 |
| Noise Impact Ranking (NIR)                              | 21 |
| Community engagement                                    | 21 |
| Compliance with regulations                             | 21 |
| · · ·                                                   |    |

## Π

| CHAPTER 7                                                                | 22 |
|--------------------------------------------------------------------------|----|
| Understanding Sustainability in the Life Performance of Steel Structures | 22 |
| Whole Life Impacts and Benefits                                          | 22 |
| Steps to Quantify Sustainability                                         | 22 |
| Interpreting Sustainability in Steel Structures                          | 23 |
| Additional Sustainability Aspects                                        | 23 |
| Durability and Resilience of Steel Structures                            | 23 |
| Longevity                                                                | 23 |
| Structural Integrity                                                     | 23 |
| Design Flexibility                                                       | 23 |
| Fire Resistance                                                          | 23 |
| Flexibility and Adaptability of Steel Structures                         | 24 |
| Flexibility in Design                                                    | 24 |
| Modularity                                                               | 24 |
| Building Re-use                                                          | 24 |
| Lightweight Construction                                                 | 24 |
| Versatility of Steel-based Structures                                    | 24 |
| Multiple Construction Types                                              | 24 |
| Design Flexibility                                                       | 24 |
| Ease of Modification                                                     | 24 |
| Compatibility with Other Materials                                       | 25 |
| Building Lifespan and Adaptability                                       | 25 |
| The dilemma of Initial Cost                                              | 25 |
| The Circular Economy and role of STEEL                                   | 26 |
| THE PIVOTAL ROLE OF STEEL IN REDEVELOPMENT PROJECTS                      | 27 |
| Why STEEL emerges as the Ideal Choice                                    | 28 |