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INTRODUCTION TO COLUMN BUCKLING 
 

 

 

 

1.0 INTRODUCTION AND BASIC CONCEPTS 

 

There are many types of compression members, the column being the best known. Top 

chords of trusses, bracing members and compression flanges of built up beams and rolled 

beams are all examples of compression elements. Columns are usually thought of as 

straight vertical members whose lengths are considerably greater than their cross-

sectional dimensions.  An initially straight strut or column, compressed by gradually 

increasing equal and opposite axial forces at the ends is considered first.  Columns and 

struts are termed “long” or “short” depending on their proneness to buckling.  If the strut 

is “short”, the applied forces will cause a compressive strain, which results in the 

shortening of the strut in the direction of the applied forces. Under incremental loading, 

this shortening continues until the column "squashes". However, if the strut is “long”, 

similar axial shortening is observed only at the initial stages of incremental loading.  

Thereafter, as the applied forces are increased in magnitude, the strut becomes “unstable” 

and develops a deformation in a direction normal to the loading axis. (See Fig.1). The 

strut is in a “buckled” state. 

  

Buckling behaviour is thus characterized by deformations developed in a direction (or 

plane) normal to that of the loading that produces it.  When the applied loading is 

increased, the buckling deformation also increases.  Buckling occurs mainly in members 

subjected to compressive forces.  If the member has high bending stiffness, its buckling 

resistance is high. Also, when the member length is increased, the buckling resistance is 

decreased. Thus the buckling resistance is high when the member is “stocky” (i.e. the 

member has a high bending stiffness and is short) conversely, the buckling resistance is 

low when the member is  “slender”. 

 

Structural steel has high yield strength and ultimate strength compared with other 

construction materials.  Hence compression members made of steel tend to be slender.  

Buckling is of particular interest while employing steel members, which tend to be 

slender, compared with reinforced concrete or prestressed concrete compression 

members.  Members fabricated from steel plating or sheeting and subjected to 

compressive stresses also experience local buckling of the plate elements.  This chapter 

introduces buckling in the context of axially compressed struts and identifies the factors 

governing the buckling behaviour.  The local buckling of thin flanges/webs is not 

considered at this stage.  These concepts are developed further in a subsequent chapter. 
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A “short” column fails 

by compression yield 

Buckled shape 

A “long” column fails 

by predominant buckling 

Fig 1: “short” vs “long” columns 

 
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2.0 ELASTIC BUCKLING OF AN IDEAL COLUMN OR STRUT WITH PINNED 

      END 

 

To begin with, we will consider the elastic behaviour of an idealized, pin-ended, uniform 

strut.  The classical Euler analysis of this problem makes the following assumptions. 

 

 the material of which the strut is made is homogeneous and linearly elastic (i.e. it 

obeys Hooke’s Law). 

 the strut is perfectly straight and there are no imperfections. 

 the loading is applied at the centroid of the cross section at the ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will assume that the member is able to bend about one of the principal axes.  (See 

Fig. 2). Initially, the strut will remain straight for all values of P, but at a particular value 

P = Pcr, it buckles.  Let the buckling deformation at a section distant x from the end B be 

y.  

 

The bending moment at this section = Pcr.y 

 

The differential equation governing the small buckling deformation is given by  

 

 

The general solution for this differential equation is  
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where A1 and A2 are constants. 

 

Since y = 0 when x = 0, A1 = 0.    
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Fig. 2 Column Buckling 
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when x = ,   y = 0;  

 

 

Hence  

 

Either B1  = 0 or    

 

 

B1  = 0 means y = 0 for all values of x  (i.e. the column remains straight).  

Alternatively  0
EI

P
sin cr   

This equation is satisfied only when  
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where n  is any integer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While there are several buckling modes corresponding to n = 1, 2, 3, …, the lowest stable 

buckling mode corresponds to n = 1. (See Fig. 3). 
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Fig. 3 Buckling load Vs Lateral deflection Relationship 
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The lowest value of the critical load (i.e. the load causing buckling) is given by  

 

 

 

 

 

Thus the Euler buckling analysis for a " straight" strut, will lead to the following  

conclusions: 

 

1. The strut can remain straight for all values of P. 

 

2. Under incremental loading, when P reaches a value of  

 

      the strut can buckle in the shape of a half-sine wave; the amplitude of this                

      buckling deflection is indeterminate. 

 

3.   At higher values of the loads given by                   other sinusoidal buckled  

 

shapes  (n half waves) are possible.  However, it is possible to show that the       

 

      column will be in  unstable equilibrium for all values of                     

 

 whether it be straight or buckled. This means that the slightest disturbance      

 will cause the column to deflect away from its original position. Elastic    

 Instability may be defined in general terms as a condition in which the    

 structure has no tendency to return to its initial position when slightly   

      disturbed, even when the material is assumed to have an infinitely large  

 yield stress. Thus  

      represents the maximum load that the strut can usefully support. 

It is often convenient to study the onset of elastic buckling in terms of the mean applied 

compressive stress (rather than the force).  The mean compressive stress at buckling,cr , 

is given by  

 

 

where A = area of cross section of the strut.   

 

If r = radius of gyration of the cross section, then I = Ar2, 
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where   = the slenderness ratio of the column defined by    =  / r 

The equation cr = (2E)/2, implies that the critical stress of a column is inversely 

proportional to the square of the slenderness ratio of the column (see Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0 STRENGTH CURVE FOR AN IDEAL STRUT 

 

We will assume that the stress-strain relationship of the material of the column is defined 

by Fig. 5.  A strut under compression can therefore resist only a maximum force given by  

fy.A, when plastic squashing failure would occur by the plastic yielding of the entire cross 

section; this means that the stress at failure of a column can never exceed fy , shown by  

A-A1 in Fig. 6(a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 4, it is obvious that the column would fail by buckling at a stress given by 
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Fig. 5 Idealized elastic-plastic relationship for steel 
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This is indicated by B-B1 in Fig. 6(a), which combines the two types of behaviour just 

described.  The two curves intersect at C.  Obviously the column will fail when the axial 

compressive stress equals or exceeds the values defined by ACB.  In the region AC, where 

the slenderness values are low, the column fails by yielding.  In the region CB, the failure 

will be triggered by buckling.  The changeover from yielding to buckling failure occurs at 

the point C, defined by a slenderness ratio given by c and is evaluated from  

 

 

 

 

 

 

Plots of the type Fig. 6(a) are sometimes presented in a non-dimensional form illustrated 

in Fig. 6(b).  Here (f / f y) is plotted against a generalized slenderness given by   
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Fig. 6(a) Strength curve for an axially loaded initially straight pin-ended column 
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This single plot can be employed to define the strength of all axially loaded, initially 

straight columns irrespective of their E and fy values.  The change over from plastic yield  

to elastic critical buckling failure occurs when 1 (i.e. when fy = cr), the  

 

corresponding slenderness ratio  

 

 

4.0 STRENGTH OF COMPRESSION MEMBERS IN PRACTICE 

 

The highly idealized straight form assumed for the struts considered so far cannot be 

achieved in practice.  Members are never perfectly straight; they can never be loaded 

exactly at the centroid of the cross section.  Deviations from the ideal elastic plastic 

behaviour defined by Fig. 5 are encountered due to strain hardening at high strains and 

the absence of clearly defined yield point.  Moreover, residual stresses locked-in during 

the process of rolling also provide an added complexity. 

 

Thus the three components, which contribute to a reduction in the actual strength of 

columns (compared with the predictions from the “ideal” column curve) are  

 

(i) initial imperfection or initial bow. 

(ii) Eccentricity of application of loads. 

(iii) Residual stresses locked into the cross section. 

 

4.1 The Effect of Initial Out-of-Straightness  
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Fig. 7 shows a pin-ended strut having an initial imperfection and acted upon by a 

gradually increasing axial load.  As soon as the load is applied, the member experiences a 

bending moment at every cross section, which in turn causes a bending deformation.  For 

simplicity of calculations, it is usual to assume the initial shape of the column defined by  

where  ao  is the maximum imperfection at the centre, where x =  / 2.  Other initial 

shapes are, of course, possible, but the half sine-wave assumed above corresponding to 

the lowest node shape, represents the greatest influence on the actual behaviour, hence is 

adequate.  

 

Provided the material remains elastic, it is possible to show that the applied force, P, 

enhances the initial deflection at every point along the length of the column by a 

multiplier factor, given 

 

The deflection will tend to infinity, as P is increased to Pcr as shown by curve-A, see  

Fig. 8(a). 
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As the deflection increases, the bending moment on the cross section of the column 

increases.  The resulting bending stress, (M y/I), on the concave face of the column is 

compressive and adds to the axial compressive force of P/A.  As P is increased, the stress 

on the concave face reaches yield (fy).  The load causing first yield [point C in Fig. 8 (a)] 

is designated as Py. The stress distribution across the column is shown in Fig. 8(b). The 

applied load (P) can be further increased thereby causing the zone of yielding to spread 

across  the cross  section, with  the resulting  deterioration  in the  bending  stiffness of 

the column. Eventually the maximum load Pf is reached when the column collapses and 

the corresponding stress distribution is seen in Fig. 8 (b).  The extent of the post-first-

yield load increase and the section plastification depends upon the slenderness ratio of the 

column. 

 

Fig. 8(a) also shows the theoretical rigid plastic response curve B, drawn assuming       

Pcr > Pp  (Note Pp = A. fy).  Quite obviously Pcr and  Pp are upper bounds to the loads Py 

and Pf.  If the initial imperfection ao is small, Py  can be expected to be close to Pf and Pp.     

If the column is stocky, Pcr will be very large, but Pp can be expected to be close Py.  If 

the column is slender, Pcr will be low and will often be lower than Pp or Py.   In very 

slender columns, collapse will be triggered by elastic buckling.  Thus, for stocky 

columns, the upper bound is Pp and for slender columns, Pcr .If a large number of 

columns are tested to failure, and the data points representing the values of the mean 

stress at failure plotted against the slenderness () values, the resulting lower bound curve 

would be similar to the curve shown in Fig. 9. 
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Fig. 8(b) Stress distributions at C and D 
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For very stocky members, the initial out of straightness – which is more of a function of 

length than of cross sectional dimensions – has a very negligible effect and the failure is 

by plastic squash load.  For a very slender member, the lower bound curve is close to the 

elastic critical stress (cr ) curve.  At intermediate values of slenderness the effect of  

initial out of straightness is very marked and the lower bound curve is significantly below 

the fy line and cr line. 
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4.2 The Effect of Eccentricity of Applied Loading  

 

As has already been pointed out, it is impossible to ensure that the load  is applied at the 

exact centroid of the column.  Fig. 10 shows a straight column with a small eccentricity 

(e) in the applied loading.  The applied load (P) induces a bending moment (P.e) at every 

cross section.  This would cause the column to deflect laterally, in a manner similar to the 

initially deformed member discussed previously.  Once again the greatest compressive 

stress will occur at the concave face of the column at a section midway along its length.  

The load-deflection response for purely elastic and elastic-plastic behaviour is similar to 

those described in Fig. 8(a) except that the deflection is zero at zero load. 

 

The form of the lower bound strength curve obtained by allowing for eccentricity is 

shown in Fig. 10.  The only difference between this curve and that given in Fig. 9 is that 

the load carrying capacity is reduced (for stocky members) even for low values of . 

 

4.2 The Effect of Residual Stress 

 

As a consequence of the differential heating and cooling in the rolling and forming 

processes, there will always be inherent residual stresses.  A simple explanation for this 

phenomenon follows.  Consider a billet during the rolling process when it is shaped into 

an I section.  As the hot billet shown in Fig. 11(a) is passed successively through a series  

of rollers, the shapes shown in 11(b), (c) and (d) are gradually obtained.  The outstands 

(b-b) cool off earlier, before the thicker inner elements (a-a) cool down.     

 

 

 

 

 

 

           

 

 

 

 

                                                                                                 

 

 

 

As one part of the cross section (b-b) cools off, it tends to shrink first but continues to 

remain an integral part of the rest of the cross section. Eventually the thicker element (a) 

also cool off and shrink.   As these elements remain composite with the edge elements, 

the differential shrinkage induces compression at the outer edges (b).  But as the cross 

section is in equilibrium – these stresses have to be balanced by tensile stresses at inner 

location (a).  The tensile stress can sometimes be very high and reach upto yield stress.  

The compressive stress induced due to this phenomenon is called “residual compressive 

stress” and the corresponding tensile stress is termed “ residual tensile stress”. 

  b               b 

   a    a 

b                 b 

  a    a 
 b              b 

a a 

Fig. 11 Various stages of rolling a steel girder 
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Fig. 12 The influence of residual stresses 
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Consider a short compression member (called a “stub column”, Fig. 12(a) having a 

residual stress distribution as shown in Fig. 12 (b).  When this cross section is subjected 

to an applied uniform compressive stress (a) the stress distribution across the cross 

section becomes non-uniform due to the presence of the residual stresses discussed 

above.  The largest compressive stress will be at the edges and is (a + r )   

 

Provided the total stress nowhere reaches yield, the section continues to deform 

elastically. Under incremental loading, the flange tips will yield first when [(a + r ) = 

fy].  Under further loading, yielding will spread inwards and eventually the web will also 

yield.  When   a = fy , the entire section will have yielded.  The relationship between the 

mean axial stress and mean axial strain obtained from the stub column test is seen in  

Fig. 13. 

 

Only in a very stocky column (i.e. one with a very low slenderness) the residual stress 

causes premature yielding in the manner just described.  The mean stress at failure will be   

fy , i.e. failure load is not affected by the residual stress.  A very slender strut will fail by 

buckling, i.e. cr << fy.  For struts having intermediate slenderness, the premature yielding 

at the tips reduces the effective bending stiffness of the column; in this case, the column 

will buckle elastically at a load below the elastic critical load and the plastic squash load.  

The column strength curve will thus be as shown in Fig. 14. 

 

Notice the difference between the buckling strength and the plastic squash load is most  
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4.4 The Effect of Strain-Hardening and the Absence of Clearly Defined Yield point 

 

If the material of the column has a stress-strain relationship as shown in Fig. 15, the onset 

of first yield will not be affected, but the collapse load may be increased.  Designers tend 

to ignore the effect of strain hardening which in fact provides a margin of safety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High strength steels generally have stress-strain curves of the shape given in Fig. 16.  At 

stresses above the limit of proportionality (p ), the material behaviour is non linear and 

on unloading and reloading the material is linear-elastic.  Most high strength structural 

steels Fig. 16(a) have an yield stress beyond which the curve becomes more or less 

horizontal.  Some steels do not have a plastic plateau and exhibit strain-hardening 

throughout the inelastic range Fig. 16(b).  In such cases, the yield stress is generally taken 

as the 0.2% proof stress, for purposes of computation. 
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Fig. 15 Stress-strain relationship for Steels exhibiting strain hardening 
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4.5 The Effect of all Features Taken Together 

 

In practice, a loaded column may experience most, if not all, of the effects listed above 

i.e. out of straightness, eccentricity of loading, residual stresses and lack of clearly 

defined yield point and strain hardening effects occurring simultaneously. 

 

Only strain hardening tends to raise the column strengths, particularly at low slenderness 

values.  All other effects lower the column strength values for all or part of the 

slenderness ratio range. 

 

When all the effects are put together, the resulting column strength curve is generally of 

the form shown in Fig. 17.  The beneficial effect of strain hardening at low slenderness 

values is generally more than adequate to provide compensation for any loss of strength 

due to small, accidental eccentricities in loading.  Although the column strength can 

exceed the value obtained from the yield strength (fy ), for purposes of structural design,  

the column strength curve is generally considered as having a cut off at  fy, to avoid large 

plastic compressive deformation. 

 

Since it is impossible to quantify the variations in geometric imperfections, accidental 

eccentricity, residual stresses and material properties, it is impossible to calculate with 

certainty, the greatest reduction in strength they might produce in practice.  Thus for 

design purposes, it may be impossible to draw a true lower bound column strength curve.  

A commonly employed method is to construct a curve on the basis of specified survival 

probability.  (For example, over 98% of the columns to which the column curve relates, 

can be expected - on a statistical basis – to survive at applied loads equal to those given 

by the curve).  All design codes provide column curves based on this philosophy.  

Column curves proposed for the revised Indian Code of Practice are discussed in a 

subsequent chapter. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17  General strength curves for struts with initial out of straightness,  
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5.0 THE CONCEPT OF EFFECTIVE LENGTHS 

 

So far, the discussion in this chapter has been centred around pin-ended columns.  The 

boundary conditions of a column may, however, be idealized in one the following ways  

 

 Both the ends pin jointed (i.e. the case considered in art. 2) 

 Both ends fixed. 

 One end fixed and the other end pinned. 

 One end fixed and the other end free. 

 

By setting up the corresponding differential equations, expression for the critical loads as 

given below are obtained and the corresponding buckled shapes are given in Fig. 18. 
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One end fixed and the other end pinned: 

 

 

 

One end fixed and the other end free:  
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Fig. 18 Buckled mode for different end conditions 
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Using the column, pin ended at both ends, as the basis of comparison the critical load in 

all the above cases can be obtained by employing the concept of “effective length”, e. 

 

It is easily verified that the calculated effective length for the various end conditions are 

given by  

 

Both ends pin ended, e =  

Both ends fixed, e =  / 2 

 

One end fixed and the other end pinned, 

 

One end fixed and the other end free,e = 2 

 

It can be seen that the effective length corresponds to the distance between the points of 

inflection in the buckled mode. The effective column length can be defined as the length 

of an equivalent pin-ended column having the same load-carrying capacity as the member 

under consideration. The smaller the effective length of a particular column, the smaller 

its danger of lateral buckling and the greater its load carrying capacity. It must be 

recognized that no column ends are perfectly fixed or perfectly hinged.  The designer 

may have to interpolate between the theoretical values given above, to obtain a sensible 

approximation to actual restraint conditions.  Effective lengths commonly employed by 

Designers are discussed in Chapter 10. 

 

5.1 Effective lengths in different planes 

 

The restraint against buckling may be different for buckling about the two column axes.  

Fig 19(a) shows a pin-ended column of UC section braced about the minor axis against 

lateral movement (but not rotationally restrained) at spacing  /3. The minor axis buckling 

mode would be with an effective pin-ended column length (e)y of /3.  If there was no 

major axis bracing the effective length for buckling about the major axis (e)x would 

remain as .  Therefore, the design slenderness about the major and minor axis would be 

/rx and (/3)/ry, respectively. Generally rx< 3ry for all UC sections, hence the major axis 

slenderness (/rx) would be greater, giving the lower value of critical load, and failure 

would occur by major axis buckling.  If this is not the case, checks will have to be carried 

out about both the axes. 
 

Fig 19(b) shows a column with both ends fully restrained; the buckled shape has points of 

contraflexure, equivalent to pin ends, at  /4 from either end. The central length is clearly 

equivalent to pin-ended column of length /2. This is the case, which has full rotational 

constraints at the ends. Fig 20 (a) shows the effect of partial end-restraints. 
 

Sometimes columns are free to sway laterally, but restrained against rotation at both ends 

as in Fig.21 (a).  A water tank supported on four corner columns as in Fig.21 (b) with 

rigid joints at top is an example for the above case.  In this case the point of contraflexure 

is at mid-height of the column and the effective length (e  = 2 * /2) remains . 

2


 e
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5.2 Effective lengths  recommended for Design 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Columns with partial rotational restraint 
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Partial end-restraints are much more common in practice than fully rigid end-constraints.  

The flexibility in the end-connection and (or) flexibility of the restraining members 

ensure partial fixity at the supports.  A simple frame as shown in Fig.22 (a) is an example 

of the above case.  For nodal loading, the in-plane buckling mode for this frame is shown 

in Fig. 22(b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the top beam bent in an S-shape the rotational end-restraint stiffness is given by 

 

e

eEIM
K



6



  

For rigid beam-to-column joints this stiffness of the beam (K) will control the position of 

the point of contraflexure in the column and thus the column effective length.  These 

columns are represented in Fig. 22 (c) for which an effective length of 1.5 is suggested. 
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Fig.21 Columns with differing effective    
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Fig. 22 Column in a simple sway frame 

e 

 

W W 



  INTRODUCTION TO COLUMN BUCKLING 

Version II 
 

6-21 

5.3 No-sway and sway columns 

 

Fig. 20(a) and Fig. 20(b) represent the general cases of no-sway and sway columns with 

partial end-restraint.  The buckled shapes will be of the form shown if the top restraint 

stiffness (KT ) and the bottom restraint stiffness (KB) are equal.  For the no sway case of 

Fig.20 (a) the position of the points of contraflexure will move within the column length 

as KT and KB vary. Fig.20(c) represents the situation of low KT  and high KB. However 

for non-sway columns e  is always less than or equal to . By contrast, for sway columns 

e  is always greater than or equal to . As K decreases, the column end-joint rotations 

increase and e can easily become 2 or 3 [Fig.20 (d)]. The limiting case of K  and KB 

= 0 gives e= . 

 

 The column design stress may be written as: 

 

 
  Areafarea

r

E
P

ye

c  )(
2

2



  

 

where area is dominant, the column is stocky.  Otherwise the column strength is largely 

dependent on (1/e)
2.  Thus sway columns, i.e. with e>, are much weaker than no-sway 

ones.    

 

5.4 Accuracy in using Effective lengths 

 

For compression members in rigid-jointed frames the effective length is directly related 

to the restraint provided by all the surrounding members.  In a frame the interaction of all 

the members occurs because of the frame buckling rather than column buckling.  For the 

design purposes, the behaviour of a limited region of the frame is considered.  The 

limited frame comprises the column under consideration and each immediately adjacent 

member treated as if it were fixed at the far end.  The effective length of the critical 

column is then obtained from a chart which is entered with two coefficients k1, and k2, the 

values of which depends upon the stiffnesses of the surrounding members ku, kTL etc.  

Two different cases are considered viz. columns in non-sway frames and columns in 

sway frames.  All these cases as well as effective length charts are shown in Fig.23.  For 

the former, the effective lengths will vary from 0.5 to 1.0 depending on the values of k1 

and k2, while for the latter, the variation will be between 1.0 and  .  These end points 

correspond to cases of: (1) rotationally fixed ends with no sway and rotationally free ends 

with no sway; (2) rotationally fixed ends with free sway and rotationally free ends with 

free sway. 
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Fig. 23 Limited frames and corresponding effective length charts of BS5950: Part 1. 

         (a) Limited frame and (b) effective length ratios (k3 =  ), for non-sway frames. 

         (c) Limited frame and (d) effective length ratios (without partial bracing, k3 = 0),  

              for sway frames. 
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6.0 TORSIONAL AND TORSIONAL-FLEXURAL BUCKLING OF COLUMNS 

 

We have so far considered the flexural buckling of a column in which the member 

deforms by bending in the plane of one of the principal axes. The same form of buckling 

will be seen in an initially flat wide plate, loaded along its two ends, the two remaining 

edges being unrestrained. [See Fig. 24 (a)] 

 

On the other hand, if the plate is folded at right angles along the vertical centre-line, the 

resulting angular cross-section has a significantly enhanced bending stiffness. Under a 

uniform axial compression, the two unsupported edges tend to wave in the Euler type 

buckles. At the fold, the amplitude of the buckle is virtually zero. A horizontal cross-

section at mid height of the strut shows that the cross-section rotates relative to the ends. 

This mode of buckling is essentially torsional in nature and is initiated by the lack of 

support at the free edges. This case illustrates buckling in torsion, due to the low 

resistance to twisting of the member. 

 

Thus the column curves of the type discussed in Fig. 17 (see section 4.5) are only 

satisfactory for predicting the mean stress at collapse, when the strut buckles by bending 

in a plane of symmetry of the cross section, referred to as “ flexural buckling ”. Members 

with low torsional stiffness (eg. angles, tees etc made of thin walled members) will 

undergo torsional buckling before flexural buckling. Cruciform sections are generally 

prone to torsional buckling before flexural buckling. Singly symmetric or un-symmetric 

cross sections may undergo combined twisting about the shear centre and a translation of 

the shear centre. This is known as “ torsional – flexural buckling ”. 

 

In this article we shall determine the critical load of columns that buckle by twisting or by 

a combination of both bending and twisting.  The investigation is limited to open thin-

walled sections as they are the only sections that are susceptible to torsional or torsional-

Fig.24 (b) Folded plate twists under axial load  Fig.24 (a) Plate with unsupported edges  

Twisted position 

Original position 
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flexural buckling.  The study is also restricted to elastic behaviour, small deformations 

and concentric loading. The critical load is determined either by integrating the governing 

differential equations or by making use of an energy principle.  The analysis presented 

here uses the Rayleigh-Ritz energy method to determine the critical load. 

 

Let us consider the thin-walled open cross-section of arbitrary shape given in Fig. 25.  

The deformation taking place during buckling is assumed to consist of a combination of 

twisting and bending about two axis.  To express strain energy in its simplest form the 

deformation is reduced to two pure translations and a pure rotation.  The origin 'O' is 

assumed to be the shear centre.  The x and y directions are assumed to coincide with the 

principal axis of the section, and the z direction is taken along longitudinal axis through 

shear centre, O. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note: In deriving Euler equations, we used x axis along the length of column; here we 

are using z axis along column length) 

 

The co-ordinates of the centroid are denoted by xo and yo .  As a result of buckling the 

cross section undergoes translations u and  in the x and y directions respectively, and 

rotation  about the z-axis.  The geometric shape of the cross section in the xy plane is 

assumed to remain undisturbed throughout.  

 

Boundary conditions: 

 

It is assumed that the displacements in the x and y directions and the moments about these 

axis vanish at the ends of the member.  That is,  

u =  = 0 at z = 0 and  
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Fig. 25 Torsional -flexural buckling deformations. 
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The torsional conditions which correspond to these flexural conditions are zero rotation 

and zero warping restraint at the ends of the member.  Thus 

 

The boundary conditions will be satisfied by assuming a deflected shape of the form 

 

 

 

 

 

 

 

Strain energy stored in the member consists of four parts.  Those are 

 

i. energy due to bending in x-direction 

ii. energy due to bending in y-direction 

iii. energy of the St.Venant shear stresses. 

iv. energy of the longitudinal  stresses associated with warping torsion. 

 

Thus total strain energy is given by  

 

 

 

 

 

 

 

 

where  J and   are the torsional constant and warping constant of the section 

respectively. 

  

Substitution of the assumed deflection function (Eqn. 11) into the strain energy 

expression (Eqn. 12) and then simplification gives 

 

 

 

 

 

Potential Energy: 

 

The potential energy of the external loads is equal to the negative product of the loads 

and  the distances  they  move  as  the  column  deforms.  Potential energy is given by  
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where dA is the cross sectional area of the fibre and the load it supports is  dA  

b  is equal to the difference between the arc lengths and the chord length L of the fibre.  

i.e.  b = S-L  (Fig. 26)                                (15) 

 

 

 

 

 

 

 Fig. 26  Axial shortening of longitudinal fibre  

               due to bending 

 

 

 

 

 

 

 

The potential energy of the external loads can be shown to be given by  

 

where,  xo and yo are the co-ordinates of centroid and ro is the polar radius of gyration. 

 

Total potential energy of the system is  

 

 

 

 

 

 

 

substituting, 

 

 

Thus, equation (17) becomes 
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Since, (U+V) is a function of three variables, it will have a stationary value when its 

derivatives with respect to C1, C2 and C3 vanish.  Thus, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                      (20.a) 

 

 

 

The solution to this equation could be found by setting the determinant to be zero. 

 

 

 

 

 

 

Hence, the critical load is determined by the equation, 

 

 

 

 

This is a cubic equation in P; the three roots of the cubic equation are the critical loads 

of the member, corresponding to the three buckling mode shapes. 

 

a) For cross-section with double symmetry the centroid and shear centre coincide,                     
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Depending on the cross sectional property of the member any of the critical load values 

would govern. 

 

b) For singly symmetric sections (such as channel sections):-  

 

When the cross-section has only one axis of symmetry, say the x-axis,(eg. a 

channel section) the shear centre will be on that axis, hence equation (22) 

becomes a quadratic equation, 

 

 

 

 

 

 

This quadratic equation in P has two roots, which correspond to flexural-torsional 

buckling. 

 

The smaller root of the above equation is  

 

 

 

 

in which 

 

 

and PTF is torsional-flexural buckling load. 

 

Thus a singly symmetric section such as an equal angle or a channel can buckle either by 

flexure in the plane of symmetry or by a combination of flexure and torsion. All centrally 

loaded columns have three distinct buckling loads, at least one of which corresponds to 

torsional or torsional - flexural mode in a doubly symmetric section. Flexural buckling 

load about the weak axis is almost always the lowest.  Hence, we disregard the 

torsional buckling load in doubly symmetric sections. In non-symmetric sections, 

buckling will be always in torsional – flexural mode regardless of its shape and 
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dimensions.  However, non-symmetric sections are rarely used and their design does 

not pose a serious problem. 

 

Thin-walled open sections, such as angles and channels, can buckle by bending or by a 

combination of bending and twisting.  Which of these two modes is critical depends on 

the shape and dimensions of the cross-section.  Hence, torsional-flexural buckling must 

be considered in their design.  

 

7.0 CONCLUDING REMARKS 

 

The elastic buckling of an ideally straight column pin ended at both ends and subjected to 

axial compression was considered.  The elastic buckling load was shown to be dependent 

on the slenderness ratio (/r) of the column.  Factors affecting the column strengths (viz. 

initial imperfection, eccentricity of loading, residual stresses and lack of well-defined 

elastic limit) were all individually considered.  Finally a generalized column strength 

curve (taking account of all these factors) has been suggested, as the basis of column 

design curves employed in Design Practices.  The concept of “effective length” of the 

column has been described, which could be used as the basis of design of columns with 

differing boundary conditions. 

 

The phenomenon of Elastic Torsional and Torsional-flexural buckling of a perfect 

column were discussed conceptually. The instability effects due to torsional buckling of 

slender sections are explained and discussed. Applications to doubly and singly 

symmetric sections are derived. 
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