

Structural Steel Design Project Calculation Sheet	Job No:	Sheet 5 of 10	Rev
	Job Title: TRU	SS GIRDER RAIL BRI	
	Worked Exam	le - 1	
		Made by SSSR	Date 8-10-00
		Checked by ${ }^{\text {VK }}$	Date
(ii) Live load			
(a) Areas of Influence line diagrams for truss members discussed:			
Area of influence line for $L_{0} U_{I}=\frac{1}{2}$	$1.17=-29.3$	(Compression)	
Area of influence line for $L_{1} U_{1}=\frac{1}{2}$	$\times 1.0=+5.0$	(Tensile)	
Area of influence line for $U_{4} U_{5}=\frac{1}{2}$	$\times 2.08=-52$	(Compression)	
Area of influence line for $L_{4} L_{5}=\frac{1}{2} \times$	$2=+50$	(Tensile)	
(b) Live loads and impact loads from IRS Bridge Rules - 1982:			
Live loads and impact factors for each loaded length are found from IRS			
Bridge Rules - 1982. For maximum forces in chord members, the whole of the			
B.M. For other diagonal and vertical members, part of the span as indicated by influence line diagrams, should be loaded and the live load is determined corresponding to S.F. The impact factor is found corresponding to loaded length.			
For maximum force in members $L_{4} L_{5}$ and $U_{4} U_{5}$:			
Load length $\quad=50 \mathrm{~m}$			
Live load for B.M. $\quad=3895.2 \mathrm{kN}$			
$\text { Impact factor }=0.15+\frac{8}{6+\ell}=0.15+\frac{8}{6+50}=0.293$			
$(L L+I L) \text { per } m \text { per girder }=\frac{3895.2 \times(1+0.293)}{2 \times 50}=50.36 \mathrm{kN} / \mathrm{m}$			

Structural Steel Design Project Calculation Sheet	Job No:	Sheet 8 of 10	Rev
	Job Title: TRUSS GIRDER RAIL BRIDGE		
	Worked Example - 1		
		Made by SSSR	Date 8-10-00
		Checked by ${ }^{\text {VK }}$	Date
(4) DESIGN FOR TRUSS MEMBERS: (i) Design of diagonal member $\left(\boldsymbol{L}_{0} \boldsymbol{U}_{\mathbf{I}}\right)$: Note that in this illustration of this Member, the portal effect and fatigue are not considered. Length of the chord, $L_{0} U_{1}=\quad \ell=7810 \mathrm{~mm}$ Assume, effective length, $\ell_{\mathrm{e}}=0.7 * \ell=5467 \mathrm{~mm}$ Try a built up member with two ISHB350 spaced @ 300 mm [See chapter on axially compressed columns using curve c] Axial capacity $=(221.8 / 1.15) * 18442 / 1000=3556.5 \mathrm{kN}>2868 \mathrm{kN}$ Hence, section is safe against axial compression			SMB 350

Structural Steel Design Project Calculation Sheet	Job No: \quad Sheet 9 of 10	Rev
	Job Title: TRUSS GIRDER RAIL BRIDGE	
	Worked Example - 1	
	Made by SSSR	Date 8-10-00
	Checked by ${ }^{\text {VK }}$	Date
(iii) Design of top chord member Member length, $\ell=5000$ Assume, effective length $=0.8$ Try the section shown. $A=25786 \mathrm{~mm}^{2}$ $r_{x}=165.4 \mathrm{~mm}$ $r_{y}=210 \mathrm{~mm}$ $\lambda_{x} \quad=4250 / 165.4=25.7$ Then, σ_{c} $=239$ [See chapter on axially comp Axial capacity $=(239 / 1.15) *$ Hence, section is safe against (ii) Bottom chord design $\left(L_{4} L_{5}\right)$: Maximum compressive force Maximum tensile force $=5092$ Try the box section shown. $\begin{aligned} & A=25386 \mathrm{~mm}^{2} \\ & r_{x}=144 \mathrm{~mm} \\ & r_{y}=210 \mathrm{~mm} \end{aligned}$ Axial tension capacity of the sete Hence, section is safe in tension	al compression 8 kN $\begin{aligned} \text { ted section } & =25386 * 250 / 1.15 \\ & =5518 \mathrm{kN}>5092 \mathrm{kN} \end{aligned}$	2 plates of size 550 mm X 12 mm $\varlimsup_{424 \mathrm{~mm}}$

Structural Steel Design Project Calculation Sheet	Job No:	Sheet 10 of 10	Rev
	Job Title: TRUSS GIRDER RAIL BRIDGE		
	Worked Example - 1		
		Made by SSSR	Date 8-10-00
		Checked by 	Date
$\begin{aligned} \text { Maximum unrestrained length }=\ell & =5000 \mathrm{~mm} \\ \lambda_{x} & =5000 / 144=34.7 \\ \text { Then, } \quad \sigma_{c} & =225 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Axial capacity $=(225 / 1.15) * 25386 / 1000=4967 \mathrm{kN}>478 \mathrm{kN}$ Hence, section is safe against axial compression also. The example is only an illustration. The following have to be taken into consideration: - Design of lacings/batten - Design of connections and effect of bolt holes on member strength - Secondary bending effects - Design for fatigue			

