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MULTI – STOREY BUILDINGS – IV 
 

 

1.0 INTRODUCTION 

 

Historically monuments such as the pyramids of Egypt, Taj Mahal in India, the Temples 

of Greece, the Viaduct of Rome were all built principally with masonry using some form 

of stone or moulded bricks.  Since the introduction of Besemer’s process in 1856 several 

tall buildings have been built using steel. The 381 m Empire State Building, the Twin 

Towers of the World Trade Centre and the Sears Tower in Chicago completed in 1974 

have clearly established the suitability of steel frame construction for Tall Buildings. 

 

The innovations in lateral load resisting systems (such as introduction of frame-wall, 

framed tube, belt truss with outrigger, tube in tube and bundled tube systems) to cater to 

different storey heights and environmental requirements based on susceptibility of 

structures to either wind or seismic effects, have made it possible to build tallest buildings 

in the world using steel frames. The advancements in computer techniques and the 

interaction of Computer Aided Design and Computer Aided Manufacture are likely to 

have their impact on improved fabrication and erection techniques in reaching even taller 

structures using steel frames in the foreseeable future. 

 

When we build such tall structures it becomes necessary to consider some of the effects 

such as the effect of lateral deflection,  on gravity loading, P which are normally 

ignored in the design of building frames of normal height (say three or four storeys). 

 

A building frame deflects under lateral load. The columns of tall buildings carry large 

axial loads.  A building frame, which deflects under lateral load, is further forced to 

undergo additional deflection because of the eccentricity of gravity load from the centre 

of gravity of the column due to the deflected shape. These two effects of large axial loads 

P in the columns combined with significant lateral deflection  needs careful 

consideration in the design of tall multi-storey buildings.  The combined effect of the 

large axial loads P and lateral deflection  give rise to the destabilising P- effect.  

However, in frames that are only a few storeys high, this effect is negligible and hence 

ignored in the analysis. It is therefore necessary to classify frames based on the relative 

importance P- effects for the purpose of evaluating design forces. 

 

2.0 CLASSIFICATION OF FRAMES 

 

A frame in which sway  is prevented is called a “non-sway” frame.  However, there are 

some frames, which may sway only by a small amount since the magnitude of sway in 

such frame is small it will have only a negligible P- effect. Such frames are also 

classified as “non-sway” frames.  Therefore, to define the non-sway frame precisely, its 

lateral stiffness is used as the criteria irrespective of whether it is braced or not.  For such 

frames lateral stiffness is provided by one of the following: 
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(i) rigidity of the joints. 

(ii) provision of bracing system. 

(iii) connecting the frame to a braced frame, shear core, shear wall or a lift well. 

 

The inter storey deflection (s) (i.e. the difference in deflection of top and bottom end of a 

column in that storey) is used to quantify the lateral stiffness of the frame.  The meaning 

of inter storey deflection (s) is shown in Fig. 1(c). Fig.1 (a) shows a typical multi-storey 

frame subjected to factored (dead + live) load. To ascertain the stiffness of the frame, it is 

analysed when subjected to assumed forces of magnitude 0.5% of factored (dead + live) 

load applied laterally on the frame at each floor level as shown in Fig.1 (b) for getting the 

inter storey deflection (si) for the ith storey. Note that the lateral loads are applied without 

the presence of dead and live loads. The maximum si for any storey is taken as a measure 

of the frame stiffness. 

 

For a frame to be of the non-sway" type the maximum inter storey deflection permitted in 

any storey is generally taken as follows: 
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where  hi is the height of the ith storey. 

 

 

3.0 IDEALISATION OF MATERIAL BEHAVIOUR FOR ANALYSIS OF  

 FRAMES 

 

The strength and stability of a rigid jointed frame is examined based on material stress – 

strain idealisation of its true behaviour. 

 

3.1 Elastic Behaviour 

 

Fig.2 (a) shows idealised elastic stress–strain behaviour of typical steel for most 

structures where deformations are not large enough to change the equilibrium equations, 

this idealised elastic behaviour has been the basis of analysis. This analysis is invalid both 

in the non-linear range of material behaviour (material non-linearity) or when 

deformations are so large that the change the line of action of the force requires study of 

the equilibrium under deformed shape. 

 

3.2 Elastic – Plastic Behaviour 

  

Fig 2(b) shows a more realistic elastic-plastic idealisation. This elastic–plastic 

idealisation can be used to obtain ultimate load. Within the range of admissible 

deformations, this idealisation is sufficiently accurate though it does not consider strain-

hardening effects. This has been successfully used by researchers for obtaining full range 
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of behaviour using a realistic mathematical model of the structure. However, it is found 

to be time consuming and unsuitable for design office work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wI = f (wdi+ wli) 

wdi= dead load on ith floor 

wli = live load on ith floor 

wI = factored load on ith floor 
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  Fig.1 Approximate calculation of frame stiffness for classification of frames 
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Fig2: Idealisation of Material Behaviour curve 
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3.3 Rigid Plastic Behaviour 

 

In order to have a realistic estimate of collapse load based on mechanism of failure, rigid-

plastic stress-strain idealisation shown in Fig. 2(c) has been used. This gives acceptable 

results for non-sway frames.  In tall multi-storey frames, the sway deflections affect the 

equilibrium equations. Thus mere consideration of rigid-plastic idealisation grossly over 

estimates the collapse load. 

 

In estimating the realistic collapse load, it has been shown by Horne that the results based 

on perfectly elastic as well as rigid-plastic idealisations can be combined to give 

acceptable estimate of actual collapse load for the cases of sway frames.  Therefore, it is 

necessary to study the behaviour of the frame under these idealised material behaviour 

conditions. 

 

4.0 EFFECTIVE LENGTH OF COLUMNS 

 

4.1 Limited Frame Method 

 

The behaviour of a column under compression is largely controlled by its effective 

length. A number of idealised end conditions such as pinned, fixed, partially fixed, free 

and supported on rollers, etc., are used in text books to describe the restraint at the two 

ends of a column. In multi-storey buildings, columns are continuous and beam members 

frame into them at floor levels connected rigidly. These columns become a part of either 

a non-sway or sway frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Limited Substitute Frame 
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The column, which is a part of the multi-storey non-sway frame, can be idealised to be a 

part of a limited subframe shown in Fig.3.  Let e be the effective length of the column,  

the actual length between floor beams.  The effective length factor for the column is 

defined as k = e/ 
   

In the figure ku and kl are relative stiffness I/ values for upper and lower column 

respectively.  kbt and kbb are the sum of I/ values for beams framing into the column 

under examination at the top and bottom respectively.  The joint restraint coefficient kn  

for the column at the top and bottom is obtained from  

 

njointatmeetingmembersallofstiffnessTotal

jointtheatmeetingcolumnsofstiffnessColumn
kn   

 

In Fig.3, k1 and k2 represents the joint stiffness of the column 1-2 at the end 1 and 2 

respectively. 

 

4.2 Effective length for Non-sway (k3 = ) and sway k3=0 frames  
 

Based on the work of Wood, the value of relative end restraints k1 and k2 can be obtained 

from Contour Plot reproduced in Fig 4 (b) and Fig. 5 (b) for the non-sway frame shown 

in Fig.4 (a) and for sway frame shown in Fig.5 (a). In the case of non-sway frame, 

stability criteria considered are rotations that take place at top and bottom end of the 

column for the elastic critical load using stability functions. 

 

However, in the case of sway frames, [Fig.5 (a)] in addition to rotations, the effect of 

lateral deflection has been considered.  Subsequently, it was shown by Wood that the 

plots in Fig.4(b) and Fig.5(b) can also be used when the columns at the top and (or) 

bottom are continuous over stories provided that the joint stiffness at top and bottom are 

correctly accounted for. 

 

The effective length factor for the column k = e/ for non-sway frames lie in the range of 

“0.5 to 1.0”.  For sway frames the range increases to “1 to  “ indicating clearly the 

contribution of lateral sway to instability. 
 

Example 1: 

As an example, let us examine the case of a column with 0.5
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

    for a non-sway frame.  The effective length factor k  

for k1 = 0.5 and k2 = 0.6 and k3 =   (non-sway) from Fig.4(b) is 0.72.  Therefore the 

effective length of the column e= 0.72 . 
 

For a sway frame (k3  = 0), the effective length factor from Fig. 5(b) becomes k = 1.55 

leading to the effective length of column e = 1.55 . 
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This shows the importance of considering sway for multi-storey columns forming a part 

of a frame in which k2 =  

 

4.3 Effective length of insufficiently restrained columns in the frames 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While using the charts given in Fig.4 (b) and Fig.5 (b), following limitations should be 

considered. 

 

(i) When a member is either not present or not firmly connected to the frame, it   

             should be considered to have zero stiffness. 
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Fig.5(a) Sway frame (k3=0) 
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Fig.4(a) Non sway frame (k3=) 
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(ii) If a framing member carries nearly full moment (90% of its capacity) it will not 

provide resistance for preventing the column from buckling when plastic hinges 

have formed.  For such beams, stiffness should be taken as zero. 

(iii) If the column under question itself carries full moment (90% of its capacity) it 

will develop flexural hinge at top and bottom and as such its effective length 

should be taken as . 

(iv) When the column is attached to the foundation, a rational value of k at the bottom 

should be chosen (i.e. k=1 if pinned, 0.9 if not rigidly connected and 0.5 if rigidly 

connected with transverse beams). 

 

The above cases highlight the importance of rotational continuity being distributed by 

either plasticity or partial release due to practical foundation problems which are likely to 

reduce the restraint at the ends of the column. 

 

4.4  Effective length consideration when the frame is partially braced 

 

Neither the column considered in Fig.4 (a) with full restraint nor the column considered 

in Fig.5 (a) with no restraint can be applied to a case of a frame partially restrained by 

filler walls in between the framing members.  These panel walls partially inhibit sway.  In 

such cases, the effective length will depend on the relative stiffness of bracing system 

provided. 

 

The relative stiffness of the bracing system to that of the frame is designated as k3. 

  

BS 5950 gives a method of computing the relative stiffness of the frame based on 

computed values of the stiffnesses of columns and that of the panels in that storey.  This 

expression given in Equation 1 can be shown to be based on elastic stiffness contribution 

of the panel to that of the frame: 

  

 

where, 

 

 h     =  Storey height 

Sp  = Sum of the spring stiffness calculated as horizontal force required to produce unit  

           horizontal deflection of the panel in the storey in which the column is located. 

E     = Modulus of Elasticity of Column 

kc  =  Sum  of the stiffness of all columns in that storey represented by their I/ values. 

 

The spring stiffness Sp in equation (1) can be conveniently obtained from the unit load 

method as given in equation (2) 
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where   

 

h    = storey height 

b    = width of panel 

t     = thickness of panel 

Ep  = Modulus of Elasticity of panel 

 

 Fig. 6 and Fig.7 show the charts for computing effective length ratios for sway bracing 

stiffness of k3 = 1 and k3 = 2 respectively.  Thus, effective length factor for a column 

being a part of the frame with k3 = 1 as well as k3 = 2 can be determined using these 

charts.  These charts are intended to account for the effect of partial sway bracing. 

 

The actual effective length factor for the partial sway bracing case for a particular case of 

bracing stiffness k3 determined from equation (1) is determined by interpolating the k 

values obtained for k3 = 0 [Fig 5 (b)], k3 = 1 (Fig 6) and k3 = 2 (Fig.7). 

 

Example 2: 

 

As an example, take the case of k1 = 0.5, k2 = 0.6 for which effective length factor when 

no bracing is provided was shown to be 1.55.  From Fig.6, for k3 = 1 effective length for 

k1 = 0.5 and k2 = 0.6 is 1.44 . From Fig.7 for k3 = 2 effective length for k1 = 0.5 and k2 

= 0.6 is 1.255 . If k3 = 1.5 (relative stiffness of bracing to the frame) then the value of 

effective length factor k will be 1.41.3975
2

1.2551.44



.  Thus the effective length 

of the column with partial restraint of k3 = 1.5 is 1.4 .  For this example the effective 

length factor k for various stiffness of framing system is as shown in Table 1. 

 

                            Table 1: Effective length factor for the example frame 

 

S.No. Conditions for lateral restraint k1 k2 k3 k 

1. Non-sway 0.5 0.6  0.72 

2. Sway 0.5 0.6 0 1.55 

3.  Partial restraint by panel walls 0.5 0.6 1.5 1.40 
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Fig.4 (b) Effective Length ratioe/  for a column in a rigid- jointed   

                frame braced against sidesway for k3= 
 

Fig.5 (b) Effective Length ratioe/ for a column in a rigid- jointed   

                frame with unrestricted sidesway for k3=0 
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Fig.7 Effective Length ratio e/ for a column in a rigid-jointed 

           frame with partial sway bracing of relative stiffness k3=2 

Fig.6 Effective Length ratioe/  for a column in a rigid- jointed frame   

          with partial sway bracing of relative stiffness k3=1 
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4.5 Consideration of realistic beam stiffness based on buckling mode 

 

It is assumed that the ends of the beam away from the column end under consideration is 

fully restrained. This assumption is realistic (as shown by Wood) and acceptable because 

about 48 to 60 percent of the width of slabs are available for stiffening beams and for 

carrying the fixed end moments of loaded beams.  However, this assumption is not 

appropriate for base frames which are not integral with concrete floor and hence the value 

I/ used for such floors should be modified taking into account the critical buckling mode 

at failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Critical Buckling Mode of a Braced Frame 

        Fig.9 Critical Buckling Mode for an Unbraced Frame 
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For a non-sway frame, the beams are bent into single curvature as shown in Fig.8.  For 

this case, the beam stiffness is 0.5 I/. 
 

In the case of a sway frame, the bending mode will have double curvature as shown in 

Fig.9.  The beam stiffness in this case is 1.5 I/.  The effective length obtained for the 

column using this assumption is appropriate.  A more exact value can be obtained from 

the consideration of frame instability discussed later. 

 

It is assumed that the beam members are not subjected to axial forces. In case they are 

subjected to axial forces, the limited frame method can still be used, provided the frame is 

a non-sway one and proper care is taken to use reduced stiffness for beams based on the 

level of axial load carried by it, to its elastic buckling load Pcr. 

 

5.0 A SIMPLIFIED SWAY METHOD 

 

This is one of the approximate methods recommended by BS 5950 for elastic design of 

sway frames.  In this method, the effect of instability of the column on bending moments 

and deflection is considered by appropriately increasing their magnitude (magnifying) by 

a factor 

crP

P
1

1
 where P is the current load level and Pcr is the load required to cause 

instability.  This method has been tested for different ratios of moments acting at top and 

bottom of the column.  If we designate this moment ratio as mo (smaller end moment / 

larger end moment) the magnification factor due to instability for different ratios of mo is 

shown (by Wood) as in Fig.10.  

 

If cr = Pcr / P design, then the amplification factor will be  
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The influence of frame instability on elastic response is shown in Fig.11. BS 5950 in the 

simplified sway method requires that all moments obtained by elastic analysis due to 

horizontal forces be increased by this magnification factor.  Since the effects of instability 

are incorporated by moment magnifier method, the effective length of the column is kept 

as actual length of the column itself. 
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Fig. 10 Magnification of Moment due to axial load (non- sway) 
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6.0 ELASTIC DESIGN OF MULTISTOREY RIGID FRAMES  

 

6.1General 

 

The elastic design as per BS 5950 is made for factored loads when the deflections are 

small. The deflections should generally be limited to span/200.  In these cases, 

deflections do not cause any significant instability.  The design of beams and columns are 

made using substitute frames for gravity loading described earlier.  For horizontal loading 

it is necessary to consider entire frame.  One of the approximate methods described 

earlier can be used.  Even when elastic design is used, moment redistribution to the extent 

of 10% can be made provided compact or plastic sections are used and minor axis column 

moments are not reduced while maintaining equilibrium. 

 

6.2Non - sway frames 

 

For gravity loading non-sway frames are analysed either using full frame or using 

substitute frame.  The effective length of columns is obtained as described earlier in 

Section 4.0 taking them as braced.  For load cases involving horizontal load, pattern 

vertical loading is not considered and the entire frame is analysed. 

 

6.3Sway Frames 

 

The frames, which exceed the non-sway limit as specified in Section 2.0 are designed 

considering sway. 

 

As a first step, the frame is analysed for vertical gravity loading considering also pattern 

loading as a non-sway frame using effective length of columns applicable to those braced 

against sidesway. 

 

Fig. 11 Response (magnified) due to elastic instability 
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Next, the effects of sway is considered under all combination of loading, considering 

vertical loading effects on sway, the notional lateral load as described in Section 2.0 is 

applied at each storey level and one of the following two design methods is adopted to 

get the final design forces. 

 

(i) Simplified Design Method 

 

The side sway is allowed.  The effective length as explained in Section 4.0 using limited 

frame method is used and the design forces are obtained. 

 

(ii) Amplified Sway Method    

 

The bending moments due to lateral loads are magnified by moment magnification factor  


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
  as explained in Section 5.0 and the final design forces are obtained. Since the 

moments have been magnified the effective length of the column is assumed as actual 

length of column (i.e. eff = ).  

 

 

7.0 STABILITY CONSIDERATIONS OF SWAY FRAME UNDER ELASTIC-

PLASTIC FAILURE LOADS. 

 

7.1Elastic Critical Conditions 

 

In a normal elastic frame, the deflection function F () of the frame is proportional to the 

deflection f () of the frame under unit load.  Thus  

 

F() =   f()           (4) 

 

where  is the load factor. 

 

The axial forces in the column are proportionate to applied loading. These axial forces 

introduce the instability effects.  It is necessary to compute the reduction in stiffness of 

the columns as they approach the critical loads.  At certain critical load factors c1   c2  

 c3 (the eigen values), the stiffnesses vanish leading to large deflections. These 

correspond to critical modes at those load factors. Eigen vectors at the corresponding 

loads are represented by deflection function f(1), f(2), f(3) etc. 

 

Using the orthogonal property of the mode shapes, we can express the deflection as 

 

f()  = a1f (1) +  a2 f(2) + a3 f(3)+  …            (5) 

 

where a1, a2, and a3 are participation factors for each mode. 

 

When instability effects are considered the resulting deflection accommodating non-

linear effect can be expressed as  
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Deflections approach very large values as  approaches c1, c2 etc. When deflections 

become large, it is not acceptable to express them in terms of eigen vectors and the 

deflection pattern will change the member forces in the columns.  For deflections within 

practical limits, equation (6) is applicable. 

 

It is necessary to find the lowest critical load because it shows the onset of elastic critical 

condition.  The elastic critical load factor cr of the frame is the ratio by which each of the 

factored loads will have to be increased to cause elastic instability. 

 

This load factor is also required to be used in the approximate method for evaluating 

elastic-plastic failure loads.  The deflection method given in Appendix F of BS 5950 Part 

1: 1985 is an approximate method based on the work of Horne to arrive at a reasonable 

estimate of elastic buckling load cr. This method is described below: 

 

Consider the rigid frame shown in Fig.1 (a) and the analysis performed as indicated in 

Section 2.0 under lateral loads whose magnitude is 0.5% of the factored dead and live 

loads as shown in Fig. 1 (b).  The sway index of the typical ith storey is  

i

i
i

h

s
                           (7) 

 

Note that si is the ith storey inter storey displacement.  Thus the values of 1,2, 3,……. 

i…..n for all storeys are computed.  If  max is the maximum of all i values, then the 

elastic critical load factor is    

(8)
max

cr
200

1


   

 

Horne has shown that the above expression gives an approximate lower bound to the 

elastic critical load. 

 

7.2 Deteriorated Critical Load 

 

The stability of a structure depends on the equilibrium state with reference to the 

potential energy U. A structure with small deformation will have a typical load– 

deflection curve as indicated by curve XYZ in Fig.12 (b). The effect of load due to lateral 

deflection in these structures are not significant. The points X, Y and Z represent three 

different states of stability of the frame shown in Fig.12 (a).  The potential energy U is 

the sum of the potential energy of loads Uw and the elastic strain energy stored Ue.     
 

Thus  

 

U = Uw + Ue           (9) 
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The condition of stability of the frame can be assessed based on whether the first partial 

derivative with respect to deflection is greater than zero, less than zero or equal to zero. 

When it is greater than zero the system is stable. When it is equal to zero the system is 

neutral i.e. more displacement will not change the system. When it is less than zero the 

system is unstable i.e. a small change will cause collapse. 
 

For equilibrium  

(10)0
U







 

On the rising part, i.e., at point X,  
 

(11))(0
2

2

Stable
U





 

 

On the falling part, i.e. at Z 
 

(12))(0
2

2

Unstable
U





 

 

and at C  

 

Fig.12 Load-deflection curve for an elastic-plastic structure    

             compared with an elastic structure 
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(13))(0
2

2

neutral
U





 

 

The above explanation is valid for an elastic system undergoing instability problem. 

 

Consider the load deflection curve OXFD in Fig.12 (b) for a typical elastic-plastic non- 

linear structure system. This should include Up the energy absorbed in plastic 

deformation.  Now the total energy UN is 

 

UN  = Uw  + Ue + Up                  (14) 

 

For equilibrium 

(15)OXFDon  points allfor  Valid0


 NU
 

In the plastic zone 0
U

2

p
2







since the stress is constant 

 0
U

2

N
2







 upto F is reached                 (16) 

 

0
U

2

N
2







 at F i.e at point F                 (17) 

 

 

0
2

2




 NU
beyond F in the falling branch of FD               (18) 

 

 

The condition at failure 
 

 
(19)0

2

2






U

VU ew  

 

From the above it is clear that failure criteria for elastic-plastic structure is similar to 

elastic structure with plastically deforming parts eliminated i.e. the plastically deforming 

parts contribution becomes zero. The elastic portion between plastic hinges will still be 

contributing to the energy.  The structure with the eliminated parts is termed “deteriorated 

or depleted”. The critical load obtained under this depleted or deteriorated structure is 

known as deteriorated critical load. 

 

The curve OXC represents the behaviour of ideally elastic frame.  
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Fig.13 Frame analysed by Wood 
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The following are identified with respect to “deteriorated” critical load condition. 

 

cr = elastic critical load factor 

p = rigid plastic critical load factor 

G = rigid plastic critical load considering members between hinges formed. 

F = deteriorated critical load factor without the energy component of these parts which  

        are plastically deforming 

y =  load factor at on set of yield. 

 

Wood analysed the frame shown in Fig.13.  The values he obtained cr , p and f the 

corresponding behaviour of the example frame is reproduced in Fig.14.  The deterioration 

of critical load D for the partially plastified structure is shown in Fig.15.  None of the 

deteriorated structures correspond exactly to the actual structure with hinges at failure 

[Fig.14(c)] F obtained at elastic plastic failure is 1.90.  Though ten hinges are required 

for the rigid plastic collapse of the frame, nearly two hinges are sufficient to reduce the 

elastic critical load by nearly 50%. 

 

Such a complete analysis as discussed above is required for a realistic estimate of 

deteriorated critical load. In the absence of sophisticated Computer Programme to carry 

out such an analysis, a simplified method is required for considering the deteriorated 

critical load for use by designers.  Such an empirical approach proposed by Merchant 

Rankine Wood Equation is discussed in the next section. 

 

8.0 SIMPLIFIED EMPIRICAL APPROACH USING MERCHANT – RANKINE – 

WOOD EQUATION 

 

An examination of Fig.12 reveals that cr, the elastic critical value is too high and cannot 

be reached. If rigid plastic behaviour is assumed the critical load is represented by the 

drooping curve GH descending from p the rigid plastic load factor.  Merchant suggested 

that realistic failure load F can be expressed as a function of p and cr.  According to 

original Merchant Rankine Equation. 
 

(20)
111

rcpF 
  

This is shown in Fig.16 in which 
p

F




 is plotted vertically against 

cr

MR




.  If we call the 

failure load as Merchant – Rankine load MR then 

 

(21)
rcp

rcp

MR






  

 

Wood suggested a modification of Merchant Rankine load considering strain- hardening 

and restraint provided by cladding 
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 if   
 

(22)then; pF

p

rc 



 10  

and  

 

 

 

 

 

 

 

 

 

 

when                              then   

Consider stocky structures i.e.  

 

with 10
p

rc




 or cr > 10  and p > 1         

ensures that structures have adequate strength.  For slender structures 

 (24)4
p

cr10



 

or 

4.6< cr< 10 as used in BS 5950 the values of 
 1

9.0




cr

cr
p




  

and cr > 4.6                    (25) 

 

This is applicable to clad frames in which no account has been taken of cladding. 

 

These equations are modified for unclad frames or frames where stiffness of cladding is 

considered as indicated below: 

 

cr5.75    or                                                                                                                   (26) 

         

5.75   cr  < 20                        (27) 

 
 

 

when 

 

cr   20;  use p  1                        (30) 

(23)

rc

p

p

rcp

crp

MRWF

λ

λ
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λ

λ0.9λ

λλ

λλ







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Thus the method involves finding cr, the elastic critical load and p the rigid plastic 

critical load and then appropriate equation satisfied based on whether the frame is a clad 

one or otherwise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 16 Merchant - Rankine (modified Load) 

10
P

cr




 

 F= Failure Load 

 p =Rigid plastic collapse load 

 c=Elastic critical load 

 F =MR=
crp

rcp






 

        (Merchant Rankine) 

 

p

F




 

         

 

rc

F




 

         

0.2 0.4 0.6 0.8 1.0 

0.2 

0.4 

0.6 

1.0 

0.8 

0.87 

A C 

D 

4
λ

λ

p

rc
  

Fig. 15 Deteriorated Critical Loads of Frame analysed by Wood 
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9.0 PLASTIC DESIGN OF MULTISTOREY RIGID FRAMES 

 

Plastic design of frames can be used for frames, which are effectively braced against out 

of plane sway. 

 

9.1 Non Sway Frame  

 

The frame should be braced against lateral sway such that it can be classified as a non-

sway frame as per the condition explained in Section 2.0.  However, while considering 

the sway, against lateral loads, the bending stiffness of the frame should be ignored, as its 

buckling resistance will not be available to prevent sidesway when the frame reaches its 

plastic capacity. 

 

9.2 Sway Frames 

 

 Either of the following two methods is used: 

 

a) Rigorous Analysis: A full elastic-plastic sway analysis is performed where proper 

allowance is made for frame instability effects as indicated in Section 7.2. 

 

b) Simplified Empirical Approach: A simplified frame stability check, as given in 

Section 7.3, is made using Merchant–Rankine–Wood Equation provided the 

following conditions are satisfied. 

 

(i) The beam side-sway mechanism with hinges in all beam ends and at base of 

columns should be applicable.  There should not be other hinges in the 

column, which may lead to premature failure. 

(ii) The column in the ground floor should be designed to remain within elastic 

limit. 

(iii) Under the combination of unfactored load and notional horizontal load to 

simulate sway (wind force not included), forces and moments in the frame 

should be within elastic limit. 

 

10.0 SUMMARY 
 

In this chapter the behaviour of multistorey frames under lateral loads is described. 

Elastic design of multistorey rigid frames using simplified design method as well as 

amplified sway method have been included. Stability consideration of sway frames under 

Elastic-Plastic failure loads have been included. Finally plastic design of multistorey 

frame using simplified approach has been is presented. 
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