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1.0 INTRODUCTION  
 

In the earlier two chapters, the analysis and design of the multi-storey building frames 

were illustrated based on the assumptions that all members meeting at a particular joint of 

the structure undergo the same amount of rotation and hence the name ‘rigid framed 

structures’. In other words, the joints are assumed to be “rigid”, and there is no relative 

rotation of one member with respect to the other.  In fact, this has been the main 

underlying assumption in most of our frame analysis. At the other extreme, we assume 

the joints to be hinged in the case of truss structures.  Thus, at the supports of steel 

structures, it is assumed that either ideally fixed or ideally pinned conditions exist. In 

reality, many “rigid” connections in steel structures permit a certain amount of rotation to 

take place within the connections, and most “pinned” connections offer a small amount of 

restraint against rotation. Thus, if a more accurate analysis of such structures is desired, it 

is necessary to consider the connections as being flexible or semi – rigid. 

 

2.0 CONNECTION FLEXIBILITY IN STEEL FRAMES 

 

To illustrate the connection flexibility in steel frames, let us consider the two-storey steel 

frame structure shown in Fig.1a.  The beam BC is connected to the supporting columns 

by connections which may be carried out in several ways.  
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Fig. 1 Steel frame connections and their modelling 
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For example, the ends of the beam may be welded directly to the column flanges, or by 

using angles attached to the top and bottom of the beam, or framing angles may be used 

on the web of the beam.  Regardless of the manner of connection, there will be a certain 

amount of flexibility in connections due to the deformations of the connection 

components and the flanges of the column.  For this illustration let us assume that the 

beam column joint at B in Fig.1(a) is made up of using ‘top angle and seat angle’ 

connection.  To understand the connection flexiblity, let us  focus our attention at the 

deformation of joint B, due to application of load.  The deformation of the joint B, to an 

exaggerated scale, is shown in Fig.2(a).  From this figure it is inferred that as the moment 

to be transferred increases, the connection angles are likely to deform. 
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Due to this connection deformation, the beam BC will rotate through a larger clockwise 

angle than the column BA.  From Fig.2(b), we infer that if the beam column joint were to 

be perfectly rigid, the beam BC would have rotated along the line BR1 which is 

orthogonal to the deformed column centre line.  Instead, the beam has rotated to the 

position along BR2 .  This means that the beam has rotated an extra angle r relatively to 

the column, called the ‘relative angle of rotation’. It is obvious that the rotation 

component r is due to the connection flexibility.  Hence if one wants to consider 

connection flexibility in the analysis, the relation between the applied moment ‘M’ at the 

joint  and the relative rotation r becomes very important.  Fig.3 shows a typical M vs r 

relation observed in flexible connections.  Initially the connection behaves nearly 

elastically and the curve OA is nearly a straightline with a slope J=M/r, which represents 

the rotational spring constant of the connection and is called the joint modulus. On further 

loading, the joint begins to deform inelastically and the angle of rotation increases 

rapidly.  The connection stiffness decreases as the load increases and it is characterised 

by the M-r curve becoming flatter and flatter as it asymptotically approaches the plastic 

moment capacity Mc of the connection. Due to inherent ductility in the connection 

components, usually there would be considerable amount of ductility in the joints.  

However at normal working loads, the behavior of the connections of most structures can 

be approximated by a straightline such as OA.  For future discussions of this chapter we 

would assume that connections behave linearly and their stiffnesses could be represented 

by their joint modulus ‘J’.  In such a case, we can idealise the steel frame in Fig.1(a) as 

composed of members with an elastic rotational springs located at connections joining 

beam and column.  Such an idealised frame is shown in Fig.1(b).  For clarity in drawing 

the sketches, the springs are located at a small distance from the corresponding joints of 

the structure. For example, the hinge and rotational spring representing the connection at 

joint B are located at a small distance from the theoritical intersection of members BA and 

BC in Fig.1(b). In calculations it will be assumed that this distance is equal to zero, 

although the hinge and spring are still considered to be a part of beam BC.  

 

 

3.0 MOMENT – ROTATION CHARACTERISTICS OF STRUCTURAL STEEL 

CONNECTIONS 

 

The various types of structural steel connections that are commonly used in practice are 

shown in Fig.4.  Depending on the flexibility (or inversely the stiffness of the 

connections) the various type connections can be classified into flexible or stiff 

connections.  The schematic classification of these connections has been presented in Fig. 

5(a).  For ease of design these connections are better classified as rigid (in which the rigid 

elastic assumption is valid), semi-rigid (in which connection flexibility is to be taken into 

account) and pinned connections (in which no moment is assumed to be transferred 

across the joint).  As evident from the complexity of connections shown in Fig.4, it is 

almost impossible to develop analytical expressions for calculating the stiffness of these 

connections.  Hence, connection characteristics are mostly determined using experiments. 

Based on these experiments, analytical expressions are prescribed for design in the form 

of empirical equations.  To get the empirical equations, numerous results of 

investigations of semi-rigid connections are put into a data bank of M- r  curves.   Then 
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curve-fitting methods are used on the experimental data to develop appropriate M-r 

curves for design.  There are several curve-fitting techniques used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.4 Some typical structural steel connections 

(Chen W.F and Lui E.M., “Stability Design of Steel Frames”, CRC Press, 1991 
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They can be broadly classified as: 

 B-spline models 

 Polynomial models 

 Exponential models and 

 Power models. 
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One such popular model is the Kishi and Chen (1990) three-parameter power model as 

shown in Fig.5 (b).  The experimental data are fitted into a curve using three parameters 

such as J, MC and n.  By suitably adjusting the value of Mc and ‘n’, a family of M-r 

curves could be generated.  However, for the subsequent part of our discussion we are 

interested in the linear connection behaviour, and hence only the connection modulus ‘J’ 

alone is of interest to us.  It is to be noted that in the case of nonlinear analysis, all the 

parameters are needed. 

 

 

4.0 DERIVATION OF BASIC EQUATIONS FOR THE ANALYSIS OF SEMI-

RIGID STEEL FRAMES USING MOMENT DISTRIBUTION METHOD 

 

In this section, we would see as to how semi-rigid or flexibly connected steel frames 

could be analysed using the popular “Moment Distribution Method (MDM)”.Since MDM 

has been well documented in engineering text books, the fundamentals of MDM would 

not be repeated here.  The following discussions are based on the assumption that the 

reader has prior knowledge of MDM. 

 

As we have seen earlier, semi-rigid steel frames could be idealised as bare steel frames 

with connections modelled as flexural springs as in Fig.1(b).  Hence, it is apparent that  to 

model the connection flexibility using MDM, the first step in the analysis is the 

determination of moment distribution factors for a beam (which are based on connection 

stiffnesses) with a spring at one end or springs at both ends.  Firstly we would see 

individual members having flexible connections at one or both ends and later we would 

consider the entire steel frame to be composed of these individual members.  When there 

is a flexible connection at each end of the beam, the stiffness and carry-over factors can 

be derived from a consideration of the beam shown in Fig.6. 

 

 

 

 

 

 

 

 

 

 

The beam is simply supported at the ends and the joint modulii are Ja and Jb at ends A and 

B, respectively.  Under the action of moments Ma and Mb acting at the ends, the ends of 

the beam will rotate through small angles a  and b , which are assumed positive in the 

same directions as the positive end moments as shown in Fig 6. The angles of rotation at 

the ends of the portion of the beam between the springs could be written as  

 

EI

LM

EI

LM ba

63
  and 

EI

LM

EI

LM ba

36
        (1) 

L 

Mb Ma Ja 
Jb 

Fig.6 Beam with connection springs at both ends 

A 
B 



MULTI-STOREY BUILDINGS – III 

 

Version II 39 - 7 

Due to rotations of the elastic springs representing the connections, the ends of the beam 

rotate through additional angles equal to 
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Hence the total angles of rotation of the ends of the beam in Fig.6 is given by 
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The above equations are fundamental in nature using which we can calculate the stiffness 

and carry-over factors of any member with flexible connection at it ends. 

 

4.1 Members with far end fixed and flexible connections at both ends 

 

If the far end of the beam AB is fixed (Fig.7), the angle of rotation at end B is zero. The 

carry-over factor from end A to the end B can be found by solving Eq.3.(b) for the ratio of 

Mb to Ma; we get 
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Introducing a factor called ‘j’  
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where ‘j’ is a dimensionless quantity called the joint factor. Hence Eq.4 becomes 
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On the other hand, if the connection at the far end of the beam is rigid instead of flexible, 

it represents a rigid connection and it is equivalent to a joint with an infinitely large joint 

modulus J.   The corresponding value of the joint factor ‘j‘ is zero (see Eq.5) and when 

this value is substituted into Eq.6 the carry-over factor becomes 0.5, a well known factor 

for the carry over moment in case far end is fixed. 

 

4.2 Members with far end pinned and flexible connections at both ends 

 

Similarly, if the connection at the far end B is completely flexible and offers no restraint 

against rotation, the value of J is zero, the joint factor j becomes infinite, and Eq.6 gives a 

carry-over factor of zero which corresponds to a beam with the far end pinned. In such a 

case, the rotational stiffness of the beam is obtained from Eqs.3 (a) by substituting for Mb 

its expression in terms of Ma and solving for the ratio Ma/ a  which is the rotational 

stiffness. This manipulation gives the fundamental formula  
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4.3 Members with extremes of joint stiffness 

In special cases such as connections at both the ends are rigid ( i.e. ja=jb=0), Eq.7 reduces 

to the well known results of Kab=4EI/L for a beam with the far end fixed. When the 

connections at A is rigid (ja=0) and the connection at B offers no restraint against rotation 

(jb=) the result is Kab=3EI/L, again a standard stiffness value for a beam with far end 

pinned. 

 

 

 

 

 

 

 

 

 

 

When the connections at the ends of the beam are identical (ja=jb=j) the stiffness of the 

beam is 
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4.4 Beam with flexible connection at one end and far end fixed 

 

Sometimes it is quiet common to have a flexible connection only at one end of the 

member.  The case, as shown in Fig.8, has a flexible connection at the far end only.  
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This can be considered as a special case of the beam in which the spring at the near end A 

of the member has an infinitely large joint modulus (ja=). Thus, by making use of Eq.6 

and Eq.7, the carry-over and stiffness factors can be written as 
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The case in which the flexible connection is located at the near end of the member and 

the far end is fixed (shown in Fig.9) can be obtained from Eq.6 and Eq.7 by substituting 

jb=0. 

 

Thus the carry-over and stiffness factors for this case become 

 

2/1abCOF                    (11) 

a

ab
jL

EI
K

41

14


                  (12) 

 

4.5 Beam with flexible connection at near end and far end pinned 

 

When the far end of the beam is simply supported instead of fixed (Fig.10) the carry-over 

factor is zero and the stiffness factor is 
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4.6 Fixed  end moments for beams with flexible connections 
 

In the earlier sections we discussed the two important parameters for MDM, namely the 

stiffness and carry over factors.  Another important parameter for the MDM is the ‘fixed 

end moments’.  A fixed – end beam carrying a uniform load of intensity ‘w’ is shown in 

Fig.11 It is assumed that the flexible connections at the ends of the beam are identical and 

have a joint modulus equal to J.   

 

 

 

 

 

 

 

 

 

Hence the beam is symmetrical and the fixed – end moments are numerically equal but 

opposite in sign ( Mb  = -Ma ).  By suitable manipulations it could be shown that the fixed 

end moments are given by 
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The above equations for fixed end moments are derived based on the assumption that the 

connection modulus Ja = Jb = J.  But in actual practice this need not be the case. Hence 

considering any end of the beam to be flexible ( End ‘B’ is assumed to be flexible in 

Eq.15&16) we can show the fixed end moments to be 
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For a case where Ja  Jb , the fixed  end moments could be obtained by simple algebraic 

addition using eqn.15&16 by suitably substituting Ja and Jb values.   The fixed end 

moment caused by a concentrated load P acting at a distance ‘kl’ from the left end of the 

beam (Fig.12) can be shown to be  
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When the connections are rigid (j=0) these expressions reduce to the usual formulas for 

fixed end moments. As before, considering the joint modulii at the ends of the member 

different, we get the fixed end moments for a flexibly connected beam under 

concentrated load as, 
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4.7 Joint Translation in sway frames 

 

In the case of sway frames, the member ends also experience lateral displacement. Fixed 

end moment formulae for beams in which one end is displaced laterally with respect to 

the other can be obtained without difficulty.  For example, if both ends of the beam are 

fixed as in Fig.13, the fixed end moments could be shown to be 
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which reduce to Ma = Mb =  
2

6
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EI  when the connections are rigid (j=0).  If there is 

flexibility at only one end (Fig.14)of the beam, the stiffness and carry–over factors are 

not the same at each end of the beam; but must be obtained from separate expressions. 

The carry – over and the stiffness factors at end A are  

Mb Ma 

J J 

Fig.12 Beam with Concentrated load and flexible connections at both ends 

kL 

L 

P 

A B 

Ma 

Mb 
J 

J 


 

Fig.13 Member with sway deflection 

L 

A 

B 



MULTI-STOREY BUILDINGS – III 

 

Version II 39 - 12 

2

1
abCOF   

jL

EI
Kab

41

14


                (22) 

 

 

 

 

 

 

 

 

 

The corresponding quantities at end B  are  
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Using the above four expressions the fixed – end moments could be calculated as 
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For a case where Ja  Jb , the fixed  end moments could be obtained by simple algebraic 

addition using eqn.24.  As a final case, it is assumed that there is a flexible connection at 

one end of the beam and that the other end of the beam is simply supported (Fig.15). The 

moment Ma at the fixed end of the beam is equal to the moment which is required to 

rotate that end of the beam through an angle  / l. This moment is equal to the stiffness 

factor for the beam with the far end simply supported times  / l; therefore 
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To summarise the above sections, it was demonstrated as to how the important 

parameters such as stiffness, carryover factor and fixed end moments could be derived 

from principles of mechanics.  Once these basic expressions are available, the entire 

semi-rigid multi-storey steel frame could be considered as made up of these basic 

components. 

 

 

5.0 ANALYSIS OF SEMI-RIGID STEEL FRAMES 
 

Using the expressions presented above we would solve some problems to understand the 

analysis of frames with semi-rigid connections.  Let us take an example of a continuous 

beam as shown in Fig.16.  
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Fig.14 Member with sway deflection and flexible connection at one end 
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Table 1 

 End AB BA BC CB 

DF  0.625 0.375  

COF  0.5 0.5 0.5 

FEM +160.000 -160.000 +63.014 -63.014 

It
er

a
ti

o
n

 

1
 

Balance B  +60.616 +36.370  

Carry over 30.308   +18.185 

Balance C    +44.829 

Carry over   22.415  

It
er

a
ti

o
n

 

2
 

Balance B  -14.010 -8.406  

Carry over -7.005   -4.203 

Balance C    +4.203 

Carry over   +2.102  

It
er

a
ti

o
n

 

3
 

Balance B  -1.314 -0.788  

Carry over -0.657   -0.394 

Balance C    +0.394 

Final 

moments 

(app.) 

 

+182.646 

 

-114.708 

 

+114.708 

 

0.000 
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Fig.16 Continuous beam with rigid connections 

E=2.083  105 MPa
 

I=8.3253  105m
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Fig.15 Member with sway deflection with far end pinned 
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At the first instance, let us assume that the support at A is rigid and accordingly we would 

work out the stiffness of joints, distribution factors and carry over factors. We obtain 

distribution factors DBA =0.625 and DBC =0.375 based on stiffnesses KBA,KBC.   Since the 

connections are assumed perfectly rigid, half the moment induced at B and C would be 

carried over to the adjuscent joint. Regarding the hinged node C, there are two ways to 

handle. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

 End AB BA BC CB 

DF  0.606 0.394  

COF  0.377 0.5 0.5 

FEM +111.421 -184.290 +63.014 -63.014 

It
er

a
ti

o
n

 

1
 

Balance B  +73.493 +47.783  

Carry over +27.707   +23.892 

Balance C    +39.123 

Carry over   +19.562  

It
er

a
ti

o
n

 

2
 

Balance B  -11.855 -7.707  

Carry over -4.469   -3.854 

Balance C    +3.854 

Carry over   +1.927  

It
er

a
ti

o
n

 3
 

Balance B  -1.168 -0.759  

Carry over -0.440   -0.380 

Balance C    +0.380 

Final 

moments 

(app.) 

 

+134.219 

 

-123.820 

 

+123.820 

 

0.000 

A B C 

UDL - 30 kN/m 

45 kN 45kN 

8m 6.67m 

2m 2m 

Fig.18 Continuous beam with flexible connection 

E=2.083  105 MPa
 

I=8.3253  105m
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Fig.17 Bending Moment Diagram (rigid case) 
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Firstly we can get the stiffness KBC considering the far end C is hinged and obtain 

KBC=3EI/L and fixed end moment MCB is set to zero.  Alternatively C could be 

considered as rigid, and subsequently we can balance C to zero and carry over the 

moments to B.  The later method is adopted in the present example.  The MDM is 

presented in Table 1 for the rigid case.  To start with, all the nodes are assumed to be 

locked.  First we unlock node B.  An unbalanced moment of –96.986 kN-m appears 

which is balanced by distributing it at node B.  Now because of the appearance of the new 

balancing moments  half the moment is carried over to adjacent end.  This is done in the 

carry over column as shown in Table 1.  This introduces unbalancing moments at node C, 

which is then balanced and moments carried over.  Now we have completed one cycle.  

Similarly we can repeat this exercise until two consequent change in moment at any node 

is within an acceptably small value.  However in the present example only three iterations 

are shown in Table 1.  We see from the results (Fig.17)that the ratio of negative support 

moment at A to the positive span moment in AB is 1.97.  We shall consider the same 

example but assume that the connection at A is flexible and the connection stiffness 

J=40000 kN-m/rad.  The problem is shown in Fig.18 and the procedure is presented in 

Table 2.  From Table 2 we observe that the connection flexiblity affects several 

parameters.  Firstly the stiffness of a particular joint gets reduced if the far end 

connection is flexible.  We see that the stiffness KBA is reduced and hence gets only 0.606 

time the connection moment as against 0.625 in the rigid case.  The Remainder of the 

moment is distributed to the other members connected to it.  Similarly we also see from 

Table 2, that the moment carried over to the far end gets reduced because of the 

connection flexiblity.  Another important observation is that the fixed end moment is 

reduced at the end where the connection flexiblity occurs leaving a increased share of the 

end moment to the rigid end.  Hence we see(Fig.19) that fixed end moment MAB is 

reduced to 134.219 kN-m from 186.646kN-m in the rigid case.  At the same time  MBA 

increased from  114.708 kN-m  to 123.820 kN-m.  The final end moments are presented 

in Table 2.  
 

We see that the , in the span AB, ratio of negative moment at A to the maximum positive 

span moment is brough down to 1.209.  The design bending moment in the span AB has 

reduced by 36%.  The reduced design moment is one of the main advantages of semi-

rigid steel frames.  In the chapter on “Welds- Static and Fatigue Strength –II’, the effect 

on connection flexiblity on the moment redistribution is well explained.  Since steel 

beams are equally good both in compression and tension, we see that there is a better 

A 

B C 

Fig.19 Bending Moment Diagram (flexible case) 

134.219 

111.008 

123.820 

3.307 
52.877 

4.04 m Values in kN-m 
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utilisation of the material of the beam for carrying the load in flexure. If we see the 

chapter on ‘Plastic Analysis’, this is exactly what we are trying to achieve.  In an ideal 

situation we could get a ratio of the negative bending moment to positive span moment as 

1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 
 

Rigid Connection 

End AB BA BC BD CB DB DE ED 

DF  0.366 0.269 0.366  0.762 0.238  

COF 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

FEM 0.0 0.0 0.0 80.0 0.0 -80.0 0.0 0.0 

Final end 

Moments 

0.0 -40.16 -29.55 69.71 0.0 -20.21 20.21 0.0 

Flexible connection 

End AB BA BC BD CB DB DE ED 

DF  0.284 0.432 0.284  0.762 0.238  

COF 0.278 0.500 0.500 0.500 0.500 0.278 0.500 0.500 

FEM 0.0 0.0 0.0 38.740 0.0 -100.6 0.0 0.0 

Final end 

Moments 

0.0 -18.11 -23.96 42.07 0.0 -23.55 23.55 0.0 

 

Another example of a single storey frame is provided as an illustration as shown in 

Fig.20.  The distribution and carryover factors for the rigid and semi-rigid case are 

presented in Table 3.  One can observe the change in the fixed end moments in Table.3.  

The problem could be solved manually or by using the program presented in the 

Appendix.  From the final end moments it is observed that the maximum moment has 

been brought down to 42.07 kN-m from 69.71 kN-m.  We also observe that connection 

A B D 

UDL – 15 kN/m 

8m 8m 

C E 

4.67m 

E=2.08e5 MPa
 

I1=33.340e-5 m
4 

I2=14.319e-5 m
4 

I3= 6.077e-5 m
4 

J=32880  kN-m 

I1 

I3 
I2 

I1 

J J 

Fig.20 Single storey steel frame 
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flexibility results in redistribution of moments and a better utilisation of the beam 

material. 

 

The procedure explained above could be extended to any multi storey steel frame.  

However as more number of storeys and bays are considered, the hand computation of 

MDM becomes very laborious.  Nevertheless, the MDM could be programmed as 

computer software.  The ideal solution for semi-rigid analysis of steel frames is the Finite 

Element Method (FEM) as it provides greater flexibility in modelling.  Since treatment of 

FEM is outside the scope of this chapter, it will suffice to know that FEM could be used 

very effectively for both linear and non-linear analysis of semi-rigid steel frames. 

 

 

6.0 SEMI-RIGID DESIGN OF FRAMES 

 

Many of the codes of practice allow the use of semi-rigid design methods for steel 

frames.  IS:800(1984) also allows the semi-rigid design methods provided some rational 

analysis procedures are used.  However the code does not elaborate any further.  For 

example, BS:5950 Part –1 allows semi-rigid design stating that (Clause 2.12.4)  “ The 

moment and rotation capacity of the joint should be based on experimental evidence 

which may permit some limited plasticity provided that the ultimate tensile capacity of 

the fasteners is not the failure criterion”.  Euro Code (EC3) also allows the semi-rigid 

design methods and the main provisions could be summarised as follows: 

 

 Moment –rotation behaviour shall be based on theory supported by experiments. 

 The real behaviour may be represented by a rotational spring. 

 The actual behaviour is generally nonlinear.  However, an appropriate design curve 

may be derived from a more precise model by adapting linear approximations such 

that the whole curve lies below the accurate curve as shown in Fig.21. 

 Three properties are defined in the M-r characteristics 

 Maximum moment of resistance (MC ) 

 Rotational stiffness (the secant stiffness J=M/ r  

 The rotation capacity c 
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Fig.21 Typical Design curve for semi-rigid joints 
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In the design of components such as beams, columns and beam columns the procedure is 

the same as in the rigid elastic design of multi storey frames.  Only in the case of columns 

and beam columns, the effective lengths of members have to be ascertained using 

alignment charts which considers connection flexibility or by an elaborate instability 

analysis. 

 

 

7.0 COMPUTER PROGRAM “FLEXIFRAME” FOR THE SEMI-RIGID 

ANALYSIS OF STEEL FRAMES 

 

A FORTRAN computer program “FLEXIFRAME” has been written to incorporate the 

derived flexibility equations using Moment Distribution Method (MDM) derived in this 

chapter.  The computer implementation of the MDM results in the Gauss – Seidel 

iteration method.  The program is capable of analysing non-sway steel frames with 

flexible connections.  However with little modifications, the program could be extended 

to the analysis of sway frames.  The computer program FLEXIFRAME has been 

presented in Appendix.  The input details of the program have also been given in 

Appendix.  The reader is encouraged to try out various problems of multi-storey semi-

rigid steel frames to understand the effect of connection flexibility using the computer 

program. 

 

 

8.0 SUMMARY 

 

In this chapter, the fundamentals of connection flexibility in steel frames are described.  

The stiffness equations for the semi-rigid analysis of steel frames using the popular 

moment distribution method are derived.  Example problems, which use the derived 

stiffness equations, have been presented.  The fundamental differences between the 

behaviour of fully rigid and semi-rigid frames have been brought out.  The importance of 

experimental evaluation of the connection stiffness has also been described.  Finally a 

brief outline of the design procedures has been presented. 
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Appendix 

 
c    A computer program to analyse non-sway semi-rigid steel frames 
      Program FLEXIFRAME 
      parameter (nsize=50) 
      character *12 inpf,outf 
      character *87 tit 
      real xlen(50),mi(nsize),jm(nsize,2),jstiffa,jstiffb,ja,jb,kval 
      integer cvity(nsize,5) 
      common/loads/udlval(100),nconc,p(10),a(10),b(10) 
      dimension nconnect(nsize),ie(nsize,2),distf(nsize,5) 
      dimension var(nsize,nsize),cof(nsize,nsize),fem(nsize,nsize) 
      dimension fimom(nsize,nsize),ibc(nsize,2),stiff(nsize,nsize) 
      write(*,*)'enter input file name'     
      read(*,'(a\)')inpf 
      write(*,*)'enter output file name' 
      read(*,'(a\)')outf 
      open(10,file=inpf) 
      open(11,file=outf) 
c     title 
      read(10,'(a)')tit 
 write(11,'(a)')tit 
c     general data 
      read(10,*)nmem,nnode,ymod,niter 
      write(11,*)nmem,nnode,ymod,niter 
c     nodal data 
      do 10 i=1,nnode 
          read(10,*)m,nconnect(m) 
          write(11,*)m,nconnect(m) 
          read(10,*)(cvity(m,j),j=1,nconnect(i)) 
          write(11,*)(cvity(m,j),j=1,nconnect(i)) 
10    continue 
c     memeber data 
      do 20 i=1,nmem 
          read(10,*)m,xlen(m),mi(m),ie(m,1),ie(m,2),jm(m,1),jm(m,2) 
     .              ,ibc(m,1),ibc(m,2)                           
          write(11,*)m,xlen(m),mi(m),ie(m,1),ie(m,2),jm(m,1),jm(m,2) 
     .              ,ibc(m,1),ibc(m,2)           
          n1=ie(m,1) 
          n2=ie(m,2) 
c         initialise the fixed end moments 
          fem(n1,n2)=0.0 
         fem(n2,n1)=0.0 
          jstiffa=jm(m,1) 
          jstiffb=jm(m,2) 
          ja= (ymod*mi(m)) / (xlen(m)*jstiffa) 
          jb= (ymod*mi(m)) / (xlen(m)*jstiffb) 
c        to determine the stiffness values 
          st=(4.*ymod*mi(m)) / xlen(m) 
          xnum=1. + 3.* jb 
          den =1. + 4.*(ja+3.*ja*jb + jb) 
          stiff(n1,n2)=st*(xnum/den) 
          xnum=1. + 3.* ja 
          den =1. + 4.*(ja+3.*ja*jb + jb)         
          stiff(n2,n1)=st*(xnum/den) 
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c         carry over factor 
          cof(n1,n2)=0.5 * ( 1./ (1.+ 3.*jb))  
          cof(n2,n1)=0.5 * ( 1./ (1.+ 3.*ja)) 
c         load data 
          read(10,*)udlval(i),nconc 
          write(11,*)udlval(i),nconc 
          fixm=(udlval(i)*xlen(m)*xlen(m)) / 12. 
         denudl=(3.+12.*ja+12.*jb+36.*ja*jb) 
          fem(n1,n2)=         fixm * ((3.*(1.+6.*jb))/ denudl) 
          fem(n2,n1)= (-1.0)* fixm * ((3.*(1.+6.*ja))/ denudl) 
          do 30 j=1,nconc 
             read(10,*)p(j),a(j),b(j) 
             write(11,*)p(j),a(j),b(j) 
             kval=a(j)/xlen(m) 
             ylen=xlen(m) 
        pval=p(j) 
             call femconc(kval,ylen,ja,jb,pval,fema,femb) 
             fem(n1,n2)=fem(n1,n2) + fema 
             fem(n2,n1)=fem(n2,n1) + femb 
30        continue 
20    continue 
       
c     compute distribution facors 
      do 40 k=1,nmem 
         n1=ie(k,1) 
         n2=ie(k,2) 
c        for 'i' node 
c        sum stiffness of members meeting at 'i' node 
         stsum=0.0 
         do 60 j=1,nconnect(n1) 
            stsum=stsum + stiff(n1,cvity(n1,j)) 
60       continue 
         distf(n1,n2)=(-1.0)*(cof(n1,n2)*stiff(n1,n2) / stsum) 
c        for 'j' node 
c        sum stiffness of members meeting at a point 
            stsum=0.0 
            do 80 j=1,nconnect(n2) 
              stsum=stsum + stiff(n2,cvity(n2,j)) 
80          continue 
            distf(n2,n1)=(-1.0)*(cof(n2,n1)*stiff(n2,n1) / stsum) 
40    continue 
c     initialise var 
      do 81 i=1,nmem 
         n1=ie(i,1) 
         n2=ie(i,2) 
         var(n1,n2)=0.0 
         var(n2,n1)=0.0 
81    continue  
c     the main Gauss - Seidel iterartion starts here 
      do 90 i=1,niter 
         do 100 j=1,nmem 
            n1=ie(j,1) 
            n2=ie(j,2) 
            if(ibc(j,1) .ne. 1)then 
c             sum of the fixed end moments at 'i' node 
              m1=nconnect(n1) 



MULTI-STOREY BUILDINGS – III 

 

Version II 39 - 21 

              sumfix=0.0 
              do 110 k=1,m1 
                 sumfix=sumfix + fem(n1,cvity(n1,k)) 
110           continue 
c             to find the sum of 'var' meeting at 'i' node 
              sumvar=0.0 
              do 120 k=1,nconnect(n1) 
                 sumvar=sumvar + var(cvity(n1,k),n1) 
120           continue 
              var(n1,n2)=distf(n1,n2) * (sumfix + sumvar)                
            endif          
            if(ibc(j,2) .ne. 1)then 
c             sum of the fixed end moments at 'j' node 
              m1=nconnect(n2) 
              sumfix=0.0 
              do 111 k=1,m1 
                 sumfix=sumfix + fem(n2,cvity(n2,k)) 
111           continue 
c             to find the sum of 'var' meeting at 'j' node 
              sumvar=0.0 
              do 121 k=1,nconnect(n2) 
                  sumvar=sumvar + var(cvity(n2,k),n2) 
121           continue 
              var(n2,n1)=distf(n2,n1) * (sumfix + sumvar)  
            endif           
100      continue             
90    continue 
       
c     computation of final moments 
      write(*,*)'***** Final support moments *****' 
 write(11,*)'***** Final support moments *****' 
      write(*,*)'Member no:    I-node moment          J-node moment' 
      write(11,*)'Member no:    I-node moment          J-node moment' 
      do 130 i=1,nmem 
         n1=ie(i,1) 
         n2=ie(i,2) 
         fimom(n1,n2)=fem(n1,n2) + (var(n1,n2)/cof(n1,n2)) + var(n2,n1) 
         fimom(n2,n1)=fem(n2,n1) + (var(n2,n1)/cof(n2,n1)) + var(n1,n2) 
999    continue 
         write(*,888)i,fimom(n1,n2),fimom(n2,n1)  
         write(11,888)i,fimom(n1,n2),fimom(n2,n1) 
130   continue          
888   format(i3,10x,f15.4,7x,f15.4) 
      stop 
      end 
c    ------------------------------------------------ 
      subroutine femconc(kval,xlen,ja,jb,pval,fema,femb) 
c    ------------------------------------------------ 
      real kval,num,ja,jb 
      xnum=pval*kval*xlen*(1.-kval) 
     den=(1.+4.*ja+4.*jb+12.*ja*jb) 
     num=1.+4.*jb -kval*(1.+2.*jb) 
      fema=(xnum*num)/den 
      xnum=(-1.0)*pval*kval*xlen*(1.- kval) 
      num=2.*ja + kval*(1.+2.*ja) 
      femb= xnum*num/den 
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      return  
      end 
 
 

Input to Flexiframe 
 

Card set No 1:  nmem –number of members in the steel frame 

  nnode –number of nodes in the steel frame 

  ymod  -Youngs Modulus 

  niter   -Number of moment distribution iterations 

 

Card set No.2: For every node 

  Node number, number of nodes connected to that particular node 

  Node numbers connected 

 

 

 
 

 

Card set No.3: For every member 

Node number, Length, Moment of inertia, I-node,J-node, Ja value, Jb value, 

Displacement code for I-node,Displacement code for J-node 

Disp. Code  -1 – joint is fixed 

Disp. Code –0  - joint is pinned or it can rotate 

  UDL value, number of concentrated loads 

  For number of concentrated loads 

  Load value, a –distance, b-distance 

 
Example Problem: 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Ja Jb 
I-node J-node 

a P b 

3mm 

1 

2 5 

3 4 
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          -Member 

 

            -node 

 

             -Udl 

            

 

J J 

J 

J 

3m 

3mm 

E=2.1e05 MPa 

I  =8.65e-5 m4  

(for all members) 

UDL=20kN/m 

Conc.load P=10.kN 

J =40000 kN-m 

1.5m 1.5m 
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Input data for example Problem: 

data for example problem (All units in kN -m) 

6,6,2.1e05,40 

1,1 
2 

2,3 

1,3,5 

3,2 

2,4 

4,2 

3,5 

5,3 

2,4,6 

6,1 

5 

1, 3.,8.65e-5,1,2,1.e20,1.e20,1,0 
0. 0 

2, 3.,8.65e-5,2,3,1.e20,1.e20,0,0 

0. 0 

3, 3.,8.65e-5,2,5,40000.,40000.,0,0 

20.0  0 

4, 3.,8.65e-5,3,4, 40000., 40000.,0,0 

20.0 1 

10. 1.5 1.5 

5, 3.,8.65e-5,4,5,1.e20,1.e20,0,0 

0. 0 

6, 3.,8.65e-5,5,6,1.e20,1.e20,0,1 
0.0 0 
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