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PLASTIC ANALYSIS  
 

 

1.0 INTRODUCTION 

 

The elastic design method, also termed as allowable stress method (or Working stress 

method), is a conventional method of design based on the elastic properties of steel.  This 

method of design limits the structural usefulness of the material upto a certain allowable 

stress, which is well below the elastic limit. The stresses due to working loads do not 

exceed the specified allowable stresses, which are obtained by applying an adequate 

factor of safety to the yield stress of steel.  The elastic design does not take into account 

the strength of the material beyond the elastic stress.  Therefore the structure designed 

according to this method will be heavier than that designed by plastic methods, but in 

many cases, elastic design will also require less stability bracing. 

 

In the method of plastic design of a structure, the ultimate load rather than the yield stress 

is regarded as the design criterion. The term plastic has occurred due to the fact that the 

ultimate load is found from the strength of steel in the plastic range. This method is also 

known as method of load factor design or ultimate load design. The strength of steel 

beyond the yield stress is fully utilised in this method. This method is rapid and provides 

a rational approach for the analysis of the structure. This method also provides striking 

economy as regards the weight of steel since the sections designed by this method are 

smaller in size than those designed by the method of elastic design. Plastic design method 

has its main application in the analysis and design of statically indeterminate framed 

structures. 

 

2.0 BASIS OF PLASTIC THEORY 

 

2.1 Ductility of Steel 

 

Structural steel is characterised by its capacity to withstand considerable deformation 

beyond first yield, without fracture.  During the process of 'yielding' the steel deforms 

under a constant and uniform stress known as 'yield stress'. This property of steel, known 

as ductility, is utilised in plastic design methods. 

 

Fig. 1 shows the idealised stress-strain relationship for structural mild steel when it is 

subjected to direct tension.  Elastic straining of the material is represented by line OA.  

AB represents yielding of the material when the stress remains constant, and is equal to 

the yield stress, fy.  The strain occurring in the material during yielding remains after the 

load has been removed and is called the plastic strain and this strain is at least ten times 

as large as the elastic strain, y at yield point. 
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When subjected to compression, the stress-strain characteristics of various grades of 

structural steel are largely similar to Fig. 1 and display the same property of yield. The 

major difference is in the strain hardening range where there is no drop in stress after a 

peak value. This characteristic is known as ductility of steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2       Theoretical Basis 

 

 As an incremental load is applied to a beam, the cross-section with greatest bending 

moment will eventually reach the yield moment.  Elsewhere the structure is elastic and 

the 'peak' moment values are less than yield.  As load is incremented, a zone of yielding 

develops at the first critical section, but due to ductility of steel, the moment at that 

section remains about constant.  The structure, therefore, calls upon its less heavily 

stressed portions to carry the increase in load.  Eventually the zones of yielding are 

formed at other sections until the moment capacity has been exhausted at all necessary 

critical sections.  After reaching the maximum load value, the structure would simply 

deform at constant load.  Thus it is a design based upon the ultimate load-carrying 

capacity (maximum strength) of the structure.  This ultimate load is computed from a 

knowledge of the strength of steel in the plastic range and hence the name 'plastic'. 

 

2.3      Perfectly Plastic Materials 

 

The stress-strain curve for a perfectly plastic material upto strain hardening is shown in 

Fig. 2. Perfectly plastic materials follow Hook's law upto the limit of proportionality.  

The slopes of stress-strain diagrams in compression and tension i.e. the values of Young's 

modulus of elasticity of the material, are equal. Also the values of yield stresses in 

tension and compression are equal. The strains upto the strain hardening in tension and 

compression are also equal.  The stress strain curves show horizontal plateau both in 

tension and compression.  Such materials are known as perfectly plastic materials. 
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2.4        Fully Plastic Moment of a Section         

 

The fully plastic moment Mp, of a section is defined as the maximum moment of 

resistance of a fully plasticized or yielded cross-section.  The assumptions used for 

finding the plastic moment of a section are: 

 

(i) The material obeys Hooke's law until the stress reaches the upper yield value; on 

further straining, the stress drops to the lower yield value and thereafter remains 

constant. 

 

(ii) The yield stresses and the modulus of elasticity have the same value in 

compression as in tension. 

 

(iii) The material is homogeneous and isotropic in both the elastic and plastic states. 

 

(iv) The plane transverse sections (the sections perpendicular to the longitudinal axis 

of the beam) remain plane and normal to the longitudinal axis after bending, the 

effect of shear being neglected. 

 

(v) There is no resultant axial force on the beam. 

 

(vi) The cross section of the beam is symmetrical about an axis through its centroid 

parallel to plane of bending. 

 

(vii) Every layer of the material is free to expand and contract longitudinally and 

laterally under the stress as if separated from the other layers. 
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Fig.  2 Stress - Strain Curve for perfectly plastic materials 
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In order to find out the fully plastic moment of a yielded section of a beam as shown in 

Fig. 3, we employ the force equilibrium equation, namely the total force in compression 

and the total force in tension over that section are equal. 

 

 

 

 

 

 

 

 

                                                          

 

 

 

 

 

 

              

Total compression ,   C       =       Total tension , T 

 

                                                       fy . A1    =  fy. A2 

                                                         A1    =  A2 

A      =  A1 + A2 

        A1      =    A2    =    A/2 

 

Plastic Moment of resistance,  

 

 

 

                                                                                                                                       (1) 

 

where Zp , the plastic modulus of the section     = 

 

The plastic modulus of a completely yielded section is defined as the combined statical 

moment of the cross-sectional areas above and below the neutral axis or equal area axis.  

It is the resisting modulus of a completely plasticised section. 

 

3.0 BENDING OF BEAMS SYMMETRICAL ABOUT BOTH AXES 

 

The bending of a symmetrical beam subjected to a gradually increasing moment is 

considered first. The fibres of the beam across the cross section are stressed in tension or 

compression according to their position relative to the neutral axis and are strained in 

accordance with Fig. 1. 
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While the beam remains entirely elastic the stress in every fibre is proportional to its 

strain and to its distance from the neutral axis.  The stress (f) in the extreme fibres cannot 

exceed fy. (see Fig. 4) 

 

When the beam is subjected to a moment slightly greater than that, which first produces 

yield in the extreme fibres, it does not fail.  Instead the outer fibres yield at constant stress 

(fy) while the fibres nearer to the neutral axis sustain increased elastic stresses. Fig. 5 

shows the stress distribution for beams subjected to such moments. 

 

Such beams are said to be 'partially plastic' and those portions of their cross-sections, 

which have reached the yield stress, are described as 'plastic zones'. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Elastic stresses in beams 
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Fig. 5 Stresses in partially plastic beams 
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The depths of the plastic zones depend upon the magnitude of the applied moment.  As 

the moment is increased, the plastic zones increase in depth, and, it is assumed that 

plastic yielding can occur at yield stress (fy) resulting in two stress blocks, one zone 

yielding in tension and one in compression.  Fig. 6 represents the stress distribution in 

beams stressed to this stage.  The plastic zones occupy the whole of the cross section, and  

are  described as being 'fully plastic'.   When the cross section of a member is fully plastic 

under a bending moment, any attempt to increase this moment will cause the member to 

act as if hinged at the neutral axis.  This is referred to as a plastic hinge. 

 

The bending moment producing a plastic hinge is called the full plastic moment and is 

denoted by 'Mp'. Note that a plastic hinge carries a constant moment, MP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0 GENERAL REQUIREMENTS FOR UTILISING PLASTIC DESIGN                

             CONCEPTS 

 

Generally codes (such as IS 800, BS 5950) allow the use of plastic design only where 

loading is predominantly static and fatigue is not a design criterion. 

 

For example, in order to allow this high level of strain, BS 5950 prescribes the following 

restrictions on the properties of the stress-strain curve for steels used in plastically 

designed structures (clause 5.3.3). 

 

1. The yield plateau (horizontal portion of the curve) is greater than 6 times the yield 

strain. 

2. The ultimate tensile strength must be more than 1.2 times the yield strength. 

3. The elongation on a standard gauge length is not less than 15%. 

 

These limitations are intended to ensure that there is a sufficiently long plastic plateau to 

enable a hinge to form and that the steel will not experience a premature strain hardening. 
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Fig. 6 Stresses in fully plastic beams 
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4.1 Shape Factor 

 

As described previously there will be two stress blocks, one in tension, the other in 

compression, both of which will be at yield stress.  For equilibrium of the cross section, 

the areas in compression and tension must be equal.  For a rectangular cross section,                            

the elastic moment is given by,  

 

                                                                                                                                       (2.a)       

 

The plastic moment is obtained from,  

 

                                                                                                                                        (2.b) 

 

 

Here the plastic moment Mp is about 1.5 times greater than the elastic moment capacity.  

In developing this moment, there is a large straining in the extreme fibres together with 

large rotations and deflection.  This behaviour may be plotted as a moment-rotation 

curve.  Curves for various cross sections are shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ratio of the plastic modulus (Zp) to the elastic modulus (Z) is known as the shape 

factor (S) and will govern the point in the moment-rotation curve when non-linearity 

starts.  For the theoretically ideal section in bending i.e. two flange plates connected by a 

web of insignificant thickness, this will have a value of 1.  When the material at the 

centre of the section is increased, the value of S increases.  For a universal beam the value 

is about 1.15 increasing to 1.5 for a rectangle. 

 

 

yf
bd

M
6

2



1.00 

0.87 

0.67 

o 
Rotation 

S

1

a b (S 1.00) 

(S  1.15) 

(S  1.50) 

(S  1.80) 

yf
bd

M
6

2



Fig.7 Moment – rotation curves 

yyp f
bd

f
dd

bM
442

..2
2





  PLASTIC ANALYSIS 

Version II 35 - 8 

5.0 PLASTIC HINGES 

 

In deciding the manner in which a beam may fail it is desirable to understand the concept 

of how plastic hinges form where the beam is fully plastic. 

 

At the plastic hinge an infinitely large rotation can occur under a constant moment equal 

to the plastic moment of the section. Plastic hinge is defined as a yielded zone due to 

bending in a structural member at which an infinite rotation can take place at a constant 

plastic moment Mp of the section. The number of hinges necessary for failure does not 

vary for a particular structure subject to a given loading condition, although a part of a 

structure may fail independently by the formation of a smaller number of hinges.  The 

member or structure behaves in the manner of a hinged mechanism and in doing so 

adjacent hinges rotate in opposite directions. 

 

Theoretically, the plastic hinges are assumed to form at points at which plastic rotations 

occur. Thus the length of a plastic hinge is considered as zero. 

 

The values of moment, at the adjacent section of the yield zone are more than the yield 

moment upto a certain length L, of the structural member. This length L, is known as 

the hinged length. The hinged length depends upon the type of loading and the geometry 

of the cross-section of the structural member. The region of hinged length is known as 

region of  yield or plasticity. 

 

5.1       Hinged Length of a Simply Supported Beam with Central Concentrated  

Load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

                                                Fig. 8 

 

In a simply supported beam with central concentrated load, the maximum bending 

moment occurs at the centre of the beam. As the load is increased gradually, this moment 

reaches the fully plastic moment of the section Mp and a plastic hinge is formed at the 

centre. 
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Let x (= L) be the length of plasticity zone. 

 

From the bending moment diagram shown in Fig. 8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                   (3) 

 

 

Therefore the hinged length of the plasticity zone is equal to one-third of the span in this 

case. 

 

6.0       FUNDAMENTAL CONDITIONS FOR PLASTIC ANALYSIS 

 

(i) Mechanism condition: The ultimate or collapse load is reached when a 

mechanism is formed. The number of plastic hinges developed should be just 

sufficient to form a mechanism. 

 

(ii) Equilibrium condition :  Fx  = 0, Fy  = 0, Mxy  = 0 

py

yyy

py

p

M
3

2
M

3

2bh
f

6

bh
fM

4

bh
Z

4

bh
f

4

lW
M



































4

22

22



 

 

L
3

1
x

M
3

2
LMxL

MLMxL

L

x

M

M

2

L
2

x

2

L

M

M

2

L

M

2

x

2

L

M

pp

yp

p

y

p

y

py

















1



  PLASTIC ANALYSIS 

Version II 35 - 10 

(iii) Plastic moment condition: The bending moment at any section of the structure 

should not be more than the fully plastic moment of the section. 

 

6.1 Mechanism 

 

When a system of loads is applied to an elastic body, it will deform and will show a 

resistance against deformation. Such a body is known as a structure. On the other hand if 

no resistance is set up against deformation in the body, then it is known as a mechanism.  

 

Various types of independent mechanisms are 

 

6.1.1 Beam Mechanism 

 

   Fig. 9 sketches three simple structures and the corresponding mechanisms.      

   

(a)       A simply supported beam has to form 

            one plastic hinge at the point of  

            maximum bending moment.  

 Redundancy, r =  0 

 

 

(b)      A propped cantilever requires two hinges 

            to form a mechanism.       

            Redundancy, r   =   1 

            No. of plastic hinges formed, 

           =  r  +  1  =  2 

 

 

 

 

 

(c)       A fixed beam requires three hinges to  

            form a  mechanism.  

            Redundancy, r =  2 

            No. of plastic hinges  =  2  +  1  = 3  

 

    

 

 

                                                                                                                   Fig. 9 

 

From the above examples, it is seen that the number of hinges needed to form a 

mechanism equals the statical redundancy of the structure plus one.  

 

 

 



  PLASTIC ANALYSIS 

Version II 35 - 11 

6.1.2 Panel or Sway Mechanism 

 

Fig. 10 (A) shows a panel or sway mechanism for a portal frame fixed at both ends. 

 

 

 

 

 

 

 

 

 

 

6.1.3 Gable Mechanism 

 

Fig. 10 (B) shows the gable mechanism for a gable structure fixed at both the supports. 

 

6.1.4 Joint Mechanism 

 

Fig. 10 (C) shows a joint mechanism. It occurs at a joint where more than two structural 

members meet. 

 

6.1.5 Combined Mechanism 

 

Various combinations of  independent mechanisms can be made depending upon whether 

the frame is made of strong beam and weak column combination or strong column and 

weak beam combination. The one shown in Fig.11 is a combination of a beam and sway 

mechanism. Failure is triggered by formation of hinges at the bases of the columns and 

the weak beam developing two hinges. This is illustrated by the right hinge being shown 

on the beam, in a position slightly away from the joint. 

 

 

 

 

 

 

 

 

 

6.2 LOAD FACTOR AND THEOREMS OF PLASTIC COLLAPSE 

 

Plastic analysis of structures is governed by three theorems, which are detailed in this 

section. 

 

(A) Panel Mechanism (B) Gable Mechanism (C) Joint Mechanism 

 

       Fig.  10 

  

 Fig. 11 Combined Mechanism 
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The load factor at rigid plastic collapse (p) is defined as the lowest multiple of the design 

loads which will cause the whole structure, or any part of it to become a mechanism. 

 

In a limit state approach, the designer is seeking to ensure that at the appropriate factored 

loads the structure will not fail.  Thus the rigid plastic load factor p must not be less than 

unity. 

 

The number of independent mechanisms (n) is related to the number of possible plastic 

hinge locations (h) and the number of degree of redundancy (r) of the frame by the 

equation. 

 

                                        n = h – r                                                                                   (4) 

 

The three theorems of plastic collapse are given below for reference. 

 

6.2.1   Lower Bound or Static Theorem 

 

A load factor (s ) computed on the basis of an arbitrarily assumed bending moment 

diagram which is in equilibrium with the applied loads and where the fully plastic 

moment of resistance is nowhere exceeded will always be less than or at best equal to the 

load factor at rigid plastic collapse, (p). 

 

p is the highest value of  s which can be found. 

 

6.2.2 Upper Bound or Kinematic Theorem 

 

A load factor (k) computed on the basis of an arbitrarily assumed mechanism will 

always be greater than, or at best equal to the load factor at rigid plastic collapse (p )  

 

p is the lowest value of  k which can be found.  

 

6.2.3 Uniqueness Theorem 

 

If both the above criteria are satisfied, then the resulting load factor corresponds to its 

value at rigid plastic collapse (p). 

 

7.0 RIGID PLASTIC ANALYSIS 

 

As the plastic deformations at collapse are considerably larger than elastic ones, it is 

assumed that the frame remains rigid between supports and hinge positions i.e. all plastic 

rotation occurs at the plastic hinges. 

 

Considering a simply supported beam subjected to a point load at midspan, the maximum 

strain will take place at the centre of the span where a plastic hinge will be formed at 

yield of full section.  The remainder of the beam will remain straight, thus the entire 

energy will be absorbed by the rotation of the plastic hinge. (See Fig. 12) 
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Considering a centrally loaded simply supported beam at the instant of plastic collapse 

(see Fig. 12) 

Workdone at the plastic hinge  = Mp 2                                                                         (5a) 

 

Workdone by the displacement of the load =                                                                (5b) 

 

At collapse, these two must be equal 

 

   2Mp.   =                                                                                                                                 

                   

 

                                                                                                                                          (6) 

 

The moment  at collapse of an encastre  beam with a uniform load is similarly worked out 

from Fig.  13. It should be noted that three hinges are required to be formed at A, B and C 

just before collapse. 
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Workdone at the three plastic hinges =Mp ( + 2 +  )  = 4Mp                                 (7.a) 

 

Workdone by the displacement of the load =W/L . L/2 . L/2 .                                     (7.b) 

 

 

 

 

                                                                                                                                         (8) 

 

                                                                                                                                         (9) 

 

In other words the load causing plastic collapse of a section of known value of Mp is 

given by eqn. (8). All the three hinges at A, B and C will have a plastic moment of Mp as 

given in eqn. (9). 

 

7.1  Continuous Beams 

 

Consider next the three span continuous beam of uniform section throughout (constant 

Mp) as shown in Fig. 14(a). Here a conventional approach is more laborious but the 

collapse load may be readily determined by consideration of the collapse patterns. Each 

pattern represents the conversion of each of the three spans into mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

Collapse pattern 1: 

 

 

 

 

 

 

 

 

 

 

Work done in hinges = Mp ( 2  +  ) = 3 Mp 

 

16

WL
M

M16WL

M4
4

WL

p

p

p





 

10W

W 

10W 6W 

2L 2L 3L 2L 2L 3L 

Fig. 14 (a) 

 

10W 

  

2 

10W 

 
6W 

 

Fig. 14(b) 



  PLASTIC ANALYSIS 

Version II 35 - 15 

Work done by loads = 10 W( 2L ) = 20WL 

 

Collapse load, Wc =  3 Mp / 20L = 0.15 Mp / L 

 

Collapse pattern 2: 

 

 

 

 

 

 

 

 

 

 

Work done in plastic hinges = Mp ( 2  + 5 + 3 ) = 10 Mp  

 

Work done by loads  = 10W( 6L )  = 60 WL 

 

Collapse load, Wc  = 10 Mp / 60 L  = 0.17 Mp / L 

 

Collapse pattern 3: 

 

 

  

 

 

 

 

 

 

 

 

Work done in hinges = Mp ( 3  + 5 )  =  8 Mp  

 

Work done by loads = 6W (6L  )  =  36 WL 

 

Collapse load, Wc = 8 Mp / 36L  = 0.22 Mp / L 

 

Thus collapse will occur in the mode of Fig. 14 (b) when Wc   =  0.15 Mp / L . 

 

7.2 Mechanism Method 

 

In the mechanism or kinematic method of plastic analysis, various plastic failure 

mechanisms are evaluated. The plastic collapse loads corresponding to various failure 

mechanisms are obtained by equating the internal work at the plastic hinges to the 
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external work by loads during the virtual displacement. This requires evaluation of 

displacements and plastic hinge rotations. 

 

For gabled frames and other such frames, the kinematics of collapse is somewhat 

complex. It is convenient to use the instantaneous centres of rotation of the rigid elements 

of the frame to evaluate displacements corresponding to different mechanisms. In this, 

properties of rotations of a rigid body during an infinitesimally small angle  are assumed 

as follows (see Fig.15): 

 

(i) Any point P will move by distance r to point P' normal to the radius vector OP 

for length r, due to the rotation of the rigid body by an angle  about O. 

 

(ii) The work done by a force F due to the rotation of the rigid body about O by an 

angle  is given by F*x*, where x is the shortest (perpendicular distance) 

between vector F and the centre of rotation O. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider, for example the structure shown in Fig 16. Let us consider the plastic 

mechanism by formation of plastic hinges A, C, F and G. Let the virtual rotation of the 

member FG be  about plastic hinge G. Point F moves, normal to line FG to F' due to 

rotation about G. This would cause a part of the structure ABC to rotate about point A and 

point C would move to C'. Since point F moves to F' the instantaneous centre of rotation 

of segment CDF would be along the line FG. Similarly since point C would move normal 

to line AC, the instantaneous centre of rotation of element CDF should also be along the 

line AC. Thus we can locate the instantaneous centre which will be the point of 

intersection of line AC and GF, obtained by extending them to meet at I. 
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Fig.15 Rigid body rotation 
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Let us find the rotation of element CDF about instantaneous centre of rotation I, 

 

Let  FGF' = 

  

 From FGF' we get FF' = L* 

 

To find the location of I, consider similar triangles ACC" and IAG, 
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Similarly from IFF' 
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(7L/2+L/2) I= L 

 

 

 

 

Similarly from ICC' and ACC' 

 

 

 

 

 

 

The displacements of loads in the direction of application of loads are as follows: 

 

Displacement of horizontal loads 

 

For H2;  2 = 

 

 

For H3;  3 = 

 

 

For H5;  5=  

 

 

Displacement of vertical loads 

 

For P3; '2 = 

 

For P5; '5 = 

 

The rotations at the plastic hinges are as follows: 

 

A  = 

 

 

C= 

 

 

 

F= 

 

G=  

 

With these information the virtual work equation can be written. 
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7.3 Rectangular Portal Framework and Interaction Diagrams 

 

The same principle is applicable to frames as indicated in Fig. 17(a) where a portal frame 

with constant plastic moment of resistance Mp throughout is subjected to two independent 

loads H and V. 

 

This frame may distort in more than one mode.  There are basic independent modes for 

the portal frame, the pure sway of Fig. 17 (b) and a beam collapse as indicated in Fig. 17 

(c).  There is now however the possibility of the modes combining as shown in Fig. 

17(d). 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 17(b) 

 

Work done in hinges = 4 Mp 

Work done by loads  = Ha 

At incipient collapse Ha /Mp= 4           (10) 

 

 

From Fig. 17 (c) 

 

Work done in hinges = 4 Mp 

Work done by loads  = Va 

At incipient collapse = Va / Mp = 4     (11) 

 

From Fig. 17(d) 

 

Work done in hinges = 6 Mp 

Work done by loads  = Ha + Va 

At incipient collapse Ha / Mp +  Va / Mp  = 6       (12) 

 

The resulting equations, which represent the collapse criteria, are plotted on the 

interaction diagram of Fig. 18.  Since any line radiating from the origin represents 

proportional loading, the first mechanism line intersected represents failure.  The failure 

condition is therefore the line ABCD and any load condition within the area OABCD is 

therefore safe. 

Fig. 18 
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7.4 Frames not of Constant Section Throughout 

 

Let us suppose however that the beam had an enhanced value of fully plastic moment of 

2Mp.  The possible modes of collapse are unaltered but wherever a hinge forms at the 

beam/stanchion joint, it will occur in the weaker member - in this case it will be at the 

stanchion.  For clarity it is customary to draw the hinge location just away from the joint 

as indicated in Fig. 19, but in the ensuing geometric computations it is assumed that its 

location is at the joint.  The previous calculation is then modified as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 19 (b) 

 

Work done in hinges = 4 Mp 

Work done by loads = Ha 

At incipient collapse Ha / Mp = 4     (13) 

 

From Fig. 19  (c) 

 

Work done in hinges = 6 Mp 

Work done by loads = Va 

At incipient collapse Va / Mp = 6     (14) 

 

From Fig.19 (d) 

 

Work done in hinges = 8 Mp 

Work done by loads = Ha + Va 

At incipient collapse Ha / Mp +  Va / Mp  = 8      (15) 

 

The interaction diagram then becomes as shown in Fig. 20. 
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8.0 STABILITY 

 

For plastically designed frames three stability criteria have to be considered for ensuring 

the safety of the frame.  These are  

 

1. General Frame Stability. 

2. Local Buckling Criterion. 

3. Restraints. 

 

8.1General Frame Stability 

 

Under loading, all structures move.  In some cases this movement is small compared to 

the frame dimensions and the designer does not need to consider these any further.  In 

other cases, the movement of the structure will be sufficient to cause the factor of safety 

to drop by a significant amount (for more details readers may wish to refer to BS:5950 

Part 1, clauses 5.1.3, 5.5.3.2 and 5.5.3.3).  In these cases the designer will need to take 

this drop in the load carrying capacity into account in checking the structure. 

 

8.2 Local Buckling Criterion 

 

At the location of a plastic hinge, there is a considerable strain, and at ultimate load this 

can reach several times the yield strain.  Under these conditions it is essential that the 

section does not buckle locally, or the moment capacity will drop considerably.  In order 

to ensure that the sections remain stable, limiting values are provided for flange outstands 

and web depth ratios. In no circumstances should sections not complying with the plastic 

section classification limits given in the code be used  in locations where there are plastic 

hinges; otherwise there is a real risk of a premature reduction in the moment capacity of 

the member at the hinge location. 

 

The limits for the sizing of flanges and webs are discussed in another chapter on “ Local 

Buckling and Section Classification”. 

 

8.3 Restraints 

 

In order to ensure that the plastic hinge position does not become a source of premature 

failure during the rotation, torsional restraint should be provided at the plastic hinge 

locations. These are discussed in the next chapter, which covers the design requirements 

in detail. 

 

9.0 EFFECT OF AXIAL LOAD AND SHEAR 

 

If a member is subjected to the combined action of bending moment and axial force, the 

plastic moment capacity will be reduced. 

 

The presence of an axial load implies that the sum of the tension and compression forces 

in the section is not zero (Fig. 21).  This means that the neutral axis moves away from the 
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equal area axis providing an additional area in tension or compression depending on the 

type of axial load. 

 

Consider a rectangular member of width b and depth d subjected to an axial compressive 

force P together with a moment M in the vertical plane (Fig. 21). 

The values of M and P are increased at a constant value of M/P until the fully plastic 

stage is attained, then the values of M and P become: 

 

Mpa    =    0.25 fy b (d2 – 4y2)                                                                                           (16) 

 

    P    =    2y  b fy                                                                                                                                                                (17) 

where fy  =  yield stress 

          y    =   distance from the neutral axis to the stress change for 

                    Mp without axial force, Mp = fybd2/4                                                           (18) 

 

 If axial force acts alone  -Py  =  fybd                                                                   (19) 

 at the fully plastic state. 

 

From equations (16) to (19) the interaction equation can be obtained: 

 

 Mx/Mp   =  1 – P2/ Py                                                                                           (20) 

 

The presence of shear forces will also reduce the moment capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.0 PLASTIC ANALYSIS FOR MORE THAN ONE CONDITION OF  

        LOADING 

 

When more than one condition of loading can be applied to a beam or structure, it may 

not always be obvious which is critical.  It is necessary then to perform separate 

Fig. 21 Effect of axial force on plastic moment capacity 
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calculations, one for each loading condition, the section being determined by the solution 

requiring the largest plastic moment. 

 

Unlike the elastic method of design in which moments produced by different loading 

systems can be added together, plastic moments obtained by different loading systems 

cannot be combined, i.e. the plastic moment calculated for a given set of loads is only 

valid for that loading condition. This is because the 'Principle of Superposition' becomes 

invalid when parts of the structure have yielded. 

 

 

11.0    CONCLUDING REMARKS 

 

Basic concepts on Plastic Analysis have been discussed in this chapter and the methods 

of computation of ultimate load causing plastic collapse have been outlined. Theorems of 

plastic collapse and alternative patterns of hinge formation triggering plastic collapse 

have been discussed. Worked examples illustrating plastic methods of analysis have been 

provided.  
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Determine the Mp required for a symmetric single bay pitched portal frame with a 

factored UDL of 5 kN /m by instantaneous centre method. 

 

In the case of gable frames, computation of the geometrical relationship of the 

displacement in the direction of the load as the structure moves through the 

mechanism may become somewhat tedious. In such cases the method of 

instantaneous centres may be used. This method is discussed below along with its use 

for solving practical problems. 
 

In the following problem, when the structure moves under loading, the point B will 

move in a direction perpendicular to line AB . Then its centre of rotation should be 

along line AB extended. The point C will move vertically downwards and its centre of 

rotation should lie in a horizontal line. The point I satisfies both the conditions. Thus 

I  is the centre of rotation of the member BC . The rotation at both the column bases 

is taken as .  Assume that the hinges will form in the rafter at a distance of x from B 

and very close to roof apex. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22  Portal with fixed base and symmetrical vertical loading 
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Data (as shown in Fig. 20). 

 Frame centres   5.0 m 

 Span of portal   18.0 m 

 Eves height              6.0 m 

 Eves to ridge height  3.0 m 

 Purlin spacing             1.5 m  

 

Solution: 

 

 (x / 3)         =     6 

 

             =    18  / x 

 

Mp  (  + 18  / x  +   + 18  / x )        =         18  / x  [ 5 x2 / 2  + ( 9 - x ) 5x] 

 

 

 

 

For maximum value of Mp ,  

 

 

( 18 + x ) ( - 5x + 45 )  -  ( - 2.5 x2 + 45 x )        =       0 

 

                     - 2.5 x2  -  90 x - 810                      =      0 

 

                                                               x            =      7.5 m 

 

Substituting in eqn. for Mp ,                  Mp          =      69.5 kNm 
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Find Mp  for  the  portal  frame  with electrically operated travelling crane as shown 

in Fig. 21 by ‘Reactant moment diagram’ method. The roof pitch is 30. Neglect the 

effect of wind acting vertically on the roof. 

  

Horizontal wind pressure is = 1 kN/m2 

f    =  1.2  for the combined effects of wind, crane, dead load and live load. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRELIMINARY CALCULATIONS 
 

(1) Forces due to dead load and live load on roof 

 

Superimposed load  = 0.6 kN/m2 

Dead load               = 0.5 kN/m2 

Total load               = (0.6 + 0.5)  1.2  6 =    7.92 kN/m 
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(2) Crane loading 

 

3 ton capacity crane, 9.3 m span. 

 

Horizontal crane loading 

 

This may be shared between each side of the portal, based on the assumption that the 

crane wheels are flanged, and in effect share the load between the two rails. Check 

that the crane wheels are flanged when the vendor is selected, or place entire 

horizontal crane load at point B for a more onerous case. 
 

Vertical crane loading 

Maximum wheel load  = 26.5 kN (2 wheels) 

Minimum wheel load  = 7.25 kN (2 wheels) 

Maximum reaction at column due to loaded crane   = 2  26.5   = 53 kN 

Minimum reaction at column due to loaded crane  = 2  7.25   = 14.5 kN 

 

Moment due to vertical crane loading (unfactored) 

Moment at B  =    53  0.35   1.2 =      22.3 kNm 

Moment at F  =    14.5  0.35  1.2   =      6.1  kNm 

Load on the crane bracket is 350 mm eccentric from column centre line. 

 

Transverse crane loading 

Transverse load due to crab and load  =   0.1 (6.0 + 3.0)    =   3.6 kN 

Shared between points B and F, i.e. 1.8 kN each. 

 

Moment due to transverse crane loading 

Moment at B   =    1.8   5  1.2 =   10.8 kNm 

 

Split the frame at the apex, then it can be treated as two cantilevers. 

 

Total roof load  = 7.92 kN/m 

 

Load at purlin point            =                                               =   5.61 kN 
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Load at purlin point            =                                               =   9.43 kN 

 

Moment at purlin point            =     

                                           

                                                   =    24.59 kNm 

 

Moment at A   

 

Moment due to roof load                =       7.92   5  2.5   =  99 kNm 

 

Moment due to wind load on ABC    =   ( 1  6  6.5 )          1.2 =  152.1 kNm 

 

 Moment due to vertical crane loading  =   53  0.35  1.2                =   22.3 kNm 

 

Moment due to transverse crane load    =   1.8  1.2  5                    =   10.8 kNm 

 

                                                    Total                                                  =   284.2 kNm 

Moment at G  

 

Moment due to roof load               = 99 kNm 

 

Moment due to vertical crane loading  = 6.1 kNm 

 

Moment due to transverse crane load   = 10.8 kNm 

 

         Total                                            = 115.9 kNm 

 

 

Summary of the reactant moment diagram method for the portal frame is shown in 

Fig. 22(a) and 22(b). For solution by calculation, let purlins be numbered 1 to ‘n’ 

from roof to apex. Put moment for each purlin point into the reactant moment 

diagram equations and solve for successive purlin points. The largest value of Mp  

found by this method is the design case. 
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For this design the equations for Mp are: 

 

At A :     284.2 – m – 9.387 R – 5 S     = 0 

 

At  point       :  24.59 – m -  1.42 R – 2.495 S  =  - Mp 

 

At E :              99  -  m  -  2.887 R  +  5 S     =  + Mp 

 

At G :             115.9 – m – 9.387 R + 5 S     =   0      

 

 

Using the method and equations illustrated in Fig. 22(b)   these equations can be 

solved simultaneously (or by matrix) to give R = 16.2 kN, S = 16.83 kN, m = 48 kN, 

and 

Mp = 88.4 kNm. 
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Fig. 24(a)  Loadings and free moment diagrams for the portal frame 
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Fig. 24(b)   Summary of the reactant moment diagram method for a portal frame 


	Fig. 4 Elastic stresses in beams
	Rotation
	At collapse, these two must be equal
	Yield zone
	Stiff length
	Fig.17 Possible Failure Mechanisms
	Fig. 20
	Fig. 23     Summary of typical loads and dimensions for Example 2
	Frames at 6 m c/c
	A
	Wind
	DL
	LL


	Free moment diagram due to crane loads
	Free moment diagram for UDLs
	Equations for fixed bases
	F

