| Structural Steel                                                                                                                                                                                   | Job No:                                                                         | Sheet <i>1 of 1</i>                                              | Rev                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                    | Job Title: Eccentrically Loaded Bo                                              |                                                                  |                                |
| Design Project                                                                                                                                                                                     | Worked Examp                                                                    | 5 01 10 00                                                       |                                |
| 8 9                                                                                                                                                                                                |                                                                                 | Made by                                                          | Date 01-10-00                  |
|                                                                                                                                                                                                    |                                                                                 | Chacked by VK                                                    | Dete                           |
| <b>Calculation Sheet</b>                                                                                                                                                                           |                                                                                 | Checkea by VK                                                    | Date                           |
| <b>Design Example 1:</b> Design a bolted co<br>thick and the flange of an ISHB 400 colum<br>a vertical load of 100 kN at a distance<br>column as shown in Fig. E1.                                 | nnection betwee<br>nn using HSFG<br>e of 200 mm fr                              | en a bracket 8 mm<br>bolts, so as to carry<br>om the face of the | Remarks<br>Ref:<br>Section 2.1 |
| Solution:                                                                                                                                                                                          |                                                                                 |                                                                  |                                |
| 1) Bolt force:                                                                                                                                                                                     |                                                                                 | 100 kN                                                           |                                |
| $P_x = 0; P_y = 100 \text{ kN};$                                                                                                                                                                   | <u>&lt;</u> 2                                                                   | 50 < 200                                                         |                                |
| Total eccentricity x'=200+250/2=325 n                                                                                                                                                              | $nm \qquad \begin{array}{c} \Theta^{\cdot} \\ 60 \\ \Theta^{\cdot} \end{array}$ | $\Theta$                                                         |                                |
| $M = P_{y}x' = 100x325 = 32500 \text{ kN-mm}$                                                                                                                                                      | $60 \\ 60 \\ 1$                                                                 | $\overline{O}$                                                   |                                |
| Try the arrangement shown in Fig. E1<br>Note: minimum pitch = 60 mm and<br>minimum edge dist. = 60 mm                                                                                              | <u> </u><br>  <del>\</del>                                                      | $\frac{40}{1}$   $1^{1}$ $1^{2}$ $1^{2}$                         |                                |
| n = 6                                                                                                                                                                                              |                                                                                 |                                                                  |                                |
| $\sum r_i^2 = \sum x_i^2 + \sum y_i^2 = 6(70)^2 + 4(60)^2 =$                                                                                                                                       | 43800 mm <sup>2</sup>                                                           |                                                                  | Equation (8)                   |
| Shear force on the farthest bolts (corner<br>$R_{\rm i} = \sqrt{\left\{ \left[ \frac{32500 \times 60}{43800} \right]^2 + \left[ \frac{100}{6} + \frac{32500 \times 70}{43800} \right]^2 \right\}}$ | r = 81.79  kN                                                                   |                                                                  |                                |
| 2) Bolt capacity<br>Try M20 HSFG bolts                                                                                                                                                             |                                                                                 |                                                                  |                                |
| Bolt capacity in single shear = 1.1 K $\mu$                                                                                                                                                        | $P_o=1.1\times0.45$                                                             | × 177 = 87.6 kN                                                  |                                |
| ISHB 400 flange is thicker than the brac<br>bracket plate will govern.                                                                                                                             | cket plate and so                                                               | bearing on the                                                   |                                |
| Bolt capacity in bearing = $d t p_{bg} = 20$                                                                                                                                                       | × 8 × 650 × 10 <sup>-3</sup>                                                    | = 104 kN                                                         | Use 6 M20                      |
| $\therefore$ Bolt value = 87.6 kN > 81.79 safe.                                                                                                                                                    |                                                                                 |                                                                  | HSFG bolts as shown.           |
|                                                                                                                                                                                                    |                                                                                 |                                                                  |                                |



| Job Title: Beam SpliceWorked Example - 2Wade byDate 01-10-00SRSKDateCalculation SheetChecked by2) Web SpliceChecked byFor M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$ Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^3 == 122.2 \text{ kN}$ Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$ Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK}$ Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$                                                                                  | Structural Steel                                                                                           | Job No:                      | Sheet 2 of 2           | Rev                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------------------------------------------------------|
| Worked Example - 2Made by<br>SRSKDate 01-10-00Made by<br>SRSKDateCalculation SheetMade by<br>SRSKDate2) Web SpliceChecked by<br>VKDateFor M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$ Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} = 122.2 \text{ kN}$ Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Web splice<br>plate of size<br>$270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice<br>plate of size<br>$270 \times 160 \times 8 - 2 \text{ nos.}$                                                                   |                                                                                                            | Job Title: Be                |                        |                                                       |
| Index of SRSKCalculation SheetCalculation SheetCalculation SheetCalculation SheetCalculation SheetChecked by<br>VKDate2) Web SpliceFor M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$ Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} = = 122.2 \text{ kN}$ Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$ Resultant shear force = $v(22.5^2+33.3^2) = 40.2 \text{ kN} < 122.2(bolt cap) OK$ Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice<br>plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ | Design Project                                                                                             | workea Examp                 | $\frac{ne-2}{Made by}$ | Date 01-10-00                                         |
| Calculation SheetChecked by<br>$VK$ Date2) Web SpliceFor M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$ Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} = = 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Web splice<br>plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice and check side of the splice.                                                                                                                                                                                   |                                                                                                            |                              | SRSK                   |                                                       |
| 2) Web Splice2) Web SpliceFor M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$ Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} == 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK}$ Use web splice plate of size $270 \times 160 \times 8 - 2$ nos.                                                                                                                                                                             | Calculation Sheet                                                                                          |                              | Checked by             | Date                                                  |
| For M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$<br>Try 8 mm thick web splice plates on both sides of the web.<br>Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} == 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$<br>Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.<br>Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$<br>Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK}$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>Web splice.<br>Web splice.                                                                                                                                             | 2) Web Splice                                                                                              |                              | VK                     |                                                       |
| For M20 HSFG bolts of Gr.8.8 in double shear<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45 \times 144 = 142.6 \text{ kN}$<br>Try 8 mm thick web splice plates on both sides of the web.<br>Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} == 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$<br>Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.<br>Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$<br>Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK}$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>Web splice.<br>Web splice.                                                                                                                                             | -,                                                                                                         |                              |                        |                                                       |
| Try 8 mm thick web splice plates on both sides of the web.Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^3 == 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2 (bolt cap) OK}$ Use web splice plate of size $270 \times 160 \times 8 - 2$ nos.                                                                                                                                                                                                                                                                                                                                             | For M20 HSFG bolts of Gr.8.8 in doub<br>Slip resistance per bolt = $2 \times 1.1 \times 0.45$              | ble shear<br>5 × 144 = 142.6 | kN                     |                                                       |
| Therefore bearing on web will govern<br>Bearing Resistance per bolt = $20 \times 9.4 \times 650 \times 10^{-3} == 122.2 \text{ kN}$<br>Bolt value = $122.2 \text{ kN}$ Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2 + 33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK$ Use web splice plate of size $270 \times 160 \times 8 - 2$ nos.                                                                                                                                                                                                                                                                                                                                                                                                      | Try 8 mm thick web splice plates on bo                                                                     | th sides of the w            | eb.                    |                                                       |
| Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ Wetrical Shear force per bolt = $100/3 = 33.3 \text{ kN}$ Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$ Web splice plate of size<br>$270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice plate of size<br>$270 \times 160 \times 8 - 2 \text{ nos.}$ Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$ Web splice of the splice.                                                                                                                                                                                                                                                                                                                                                                                                                              | Therefore bearing on web will govern<br>Bearing Resistance per bolt = 20 × 9.4<br>Bolt value = 122.2 kN    | × 650 × 10 <sup>-3</sup> ==  | = 122.2 kN             |                                                       |
| Horizontal shear force on bolt due to moment due to eccentricity<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$<br>Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2+33.3^2} = 40.2 \text{ kN} < 122.2(\text{bolt cap}) \text{ OK}$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos}$ .<br>Web splice value of size $270 \times 160 \times 8 - 2 \text{ nos}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Try 3 bolts at 100 mm vertical pitch an                                                                    | d 45 mm from th              | ne center of joint.    |                                                       |
| Vertical Shear force per bolt = $100/3 = 33.3 \text{ kN}$<br>Resultant shear force = $\sqrt{22.5^2+33.3^2} = 40.2 \text{ kN} < 122.2(bolt cap) OK$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>Web splice<br>$270 \times 160 \times 8$<br>with 3 M20<br>bolts on each<br>side of the<br>splice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Horizontal shear force on bolt due to m<br>= $100 \times 45 \times 100/(2 \times 100^2) = 22.5 \text{ kN}$ | oment due to eco             | centricity             |                                                       |
| Resultant shear force = $\sqrt{(22.5^2+33.3^2)} = 40.2 \text{ kN} < 122.2(\text{bolt cap}) OK$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>Use web splice plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>plate of size $270 \times 160 \times 8 - 2 \text{ nos.}$<br>with 3 M20<br>bolts on each<br>side of the<br>splice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vertical Shear force per bolt = 100/3 =                                                                    | 33.3 kN                      |                        | Web splice                                            |
| Use web splice plate of size 270×160×8 - 2 nos.<br>with 3 M20<br>bolts on each<br>side of the<br>splice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Resultant shear force = $\sqrt{22.5^2+33.3^2}$                                                             | plate of size<br>270×160×8   |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use web splice plate of size 270×160×8                                                                     | - 2 nos.                     |                        | with 3 M20<br>bolts on each<br>side of the<br>splice. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                              |                        |                                                       |



| Structural Steel                                                                                                                                                      | Job No:                                                          | Sheet 2 of 2      |      | Rev                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------|------|-----------------------------|
|                                                                                                                                                                       | Job Title: Column Splice                                         |                   |      |                             |
| Design Project                                                                                                                                                        | workea Examp                                                     | ne - 4<br>Made by |      | Date 01-10-00               |
|                                                                                                                                                                       |                                                                  | initiate by       | SRSK |                             |
| Calculation Sheet                                                                                                                                                     |                                                                  | Checked by        |      | Date                        |
| 3) Elange Splige                                                                                                                                                      |                                                                  |                   | VK   |                             |
| <i>For M22 HSFG bolts, 4 Nos in single si</i><br><i>Shear force /bolt = 168.6/4 = 42.15 kN</i>                                                                        | = 0.5(440-102.8)<br>hear                                         | $) = 168.6 \ kN$  |      |                             |
| Slip resistance/bolt = $1.1 \times 0.45 \times 1$<br>Bearing resistance/bolt = $22 \times 9 \times 650$<br>Bolt value = $87.62 \text{ kN} > \text{ bolt force of } 4$ | 77 = 87.62 kN<br>0 × 10 <sup>-3</sup> = 128.7 f<br>2.15 kN .: OK | kN                |      |                             |
| End distance > $42.15 \times 10^3 / (1/3 \times 9 \times Also end distance > 1.4(22+1.5) = 35 m$                                                                      | 650) = 21.62 mr<br>nm Use 50 mm                                  | n                 |      |                             |
| <i>Use 325×200×10 mm flange splice with</i> 75 mm pitch                                                                                                               | bolts at 140 mm                                                  | ı gauge,          |      | flange splice<br>325×200×10 |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |
|                                                                                                                                                                       |                                                                  |                   |      |                             |



| Structural Steel                                                                                                         | Job No:                              | Sheet 2 of 2 | Rev                              |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|----------------------------------|
|                                                                                                                          | Job Title: Bo                        | onnection    |                                  |
| Design Project                                                                                                           | Worked Examp                         | ble - 4      | Data 15.04.00                    |
|                                                                                                                          |                                      | SRSK         | Date 15-04-00                    |
|                                                                                                                          |                                      | Checked by   | Date                             |
| Calculation Sheet                                                                                                        |                                      | VK           |                                  |
| 2) Connection of seating angle to column<br>Bolts required to resist only shear<br>Try 4 bolts of 20mm dia and grade 4.6 | flange<br>at angle back m            | arks         |                                  |
| Total shear capacity = $4 \times 160 \times 245 \times 10$                                                               | -3 = 156.8  kN > 1                   | 50 kN OK     |                                  |
| Column flange critical for bearing of be<br>Total bearing capacity $= 4 \times 418 \times 20 \times 9$ .                 | olts<br>.0×10 <sup>-3</sup> = 301 kN | > 150 kN OK  | Np <sub>bs</sub> dt <sub>f</sub> |
| 3) Provide nominal clip angle of ISA 50 >                                                                                | $\times 50 \times 8$ at the to       | р            |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |
|                                                                                                                          |                                      |              |                                  |

| Structural Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job No:                                               | Sheet 1 of 2                                              | Rev                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------|
| Job Title: Bolted Web Cleats Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                           | nection                       |
| <b>Design Project</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                           | Data 01 10 00                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Wrade by                                                  | Date 01-10-00                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Checked by                                                | Date                          |
| Calculation Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | VK                                                        | Duit                          |
| <b>Design Example 5:</b> Design a bolted web<br>between an ISMB 400 beam and an ISHB<br>connection has to transfer a factored shed<br>20 mm and grade 4.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cleat beam-to-co<br>200 @ 40 kg/m<br>ar of 150 kN. Us | olumn connection<br>column. The<br>e bolts of diameter    |                               |
| $\begin{array}{c c} ISHB\\ 200\\ 75\\ \hline 75\\ \hline 75\\ \hline 75\\ \hline \hline $ | 00<br>kN<br>Fig. E5                                   |                                                           |                               |
| 1) The recommended gauge distance for a<br>Therefore required angle back mark is<br>Use web cleats of ISA 90x90x8 giving g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | column flange is<br>50 mm.<br>gauge g = 50+50         | 100 mm.<br>0+8.9=108.9 mm                                 | g for ISHB200<br>is 100 mm OK |
| 2) Connection to web of beam- Bolt capa<br>shear capacity of bolt in double shear<br>bearing capacity of bolt on the beam w<br>bolt value = 75.24 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | city<br>= 2×160×245×10<br>veb = 418×20×9.             | 0 <sup>-3</sup> =78.4 kN<br>0×10 <sup>-3</sup> = 75.24 kN | 13 100 mm OK                  |
| Try 4 bolts as shown in the Figure with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n vertical pitch og                                   | f 75 mm                                                   |                               |
| Assuming the shear to be acting on the<br>with the centre of the bolt group will p<br>the bolts in addition to the vertical shea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | face of the colur<br>produce horizon<br>ar.           | nn, its eccentricity<br>tal shear forces in               |                               |
| horizontal shear force on top bolt due $a = 150 \times 50 \times 112.5/2(37.5^2 + 112.5^2) = 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to moment due to<br>).0 kN                            | o eccentricity e                                          | $P_x e r_i / \Sigma r_i^2$    |
| vertical shear force per bolt = $150/4 = 37.5 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                           |                               |
| resultant shear = $\sqrt{30.0^2 + 37.5^2} = 48.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 kN < bolt valu                                      | ue Safe!                                                  |                               |

| Structural Steel                                                                                                                                                                  | Job No:                    | Sheet 2 of 2       | Rev                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------------------------|
|                                                                                                                                                                                   | Job Title: Bo              | nection            |                             |
| Design Project                                                                                                                                                                    | Worked Exam                | ple – 5<br>Mada by | Data 01 10 00               |
|                                                                                                                                                                                   |                            | SRSK               | Date 01-10-00               |
|                                                                                                                                                                                   |                            | Checked by         | Date                        |
| Calculation Sheet                                                                                                                                                                 |                            | VK                 |                             |
| 3) Connection to column flange: Bolt cap                                                                                                                                          | acity                      |                    |                             |
| shear capacity of bolt in single shear =<br>bearing capacity of bolt on column flam<br>bolt value = 39.2 kN                                                                       |                            |                    |                             |
| Try 6 bolts as shown in the Fig.E5 with                                                                                                                                           | n vertical pitch c         | of 75 mm           |                             |
| 4) Check bolt force<br>Similar to the previous case, the shear<br>the angle cleats can be assumed to take<br>However, unlike the previous case, no<br>the angle and the beam web. |                            |                    |                             |
| Assuming centre of pressure 25 mm behavior horizontal shear force on bolt due to m<br>= $(150 \times 50/2) \times 200/(50^2 + 125^2 + 200^2)$ =                                   | $(V/2)e_xr_i/\Sigma r_i^2$ |                    |                             |
| vertical shear force per bolt = 150/6 =                                                                                                                                           |                            |                    |                             |
| resultant shear = $\sqrt{(12.9^2 + 25.0^2)} = 28.$                                                                                                                                |                            |                    |                             |
| Use 2 Nos ISA 90x90x8 of length 375 n                                                                                                                                             | nm as angle clea           | ats                | ISA 90x90x8<br>Length 375mm |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |
|                                                                                                                                                                                   |                            |                    |                             |

| Structural Steel                                                                                                                                                                                                                                                                                                          | Job No:                                                                                 | Sheet 1 of 2                                                      | Rev                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|
| Job Title: Bolted End Plate Con                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                   | nection                     |
| <b>Design Project</b> Worked Example - 6                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                   | D ( 01 10 00                |
|                                                                                                                                                                                                                                                                                                                           |                                                                                         | Made by                                                           | Date 01-10-00               |
|                                                                                                                                                                                                                                                                                                                           |                                                                                         | Chaokad by                                                        | Data                        |
| Calculation Sheet                                                                                                                                                                                                                                                                                                         |                                                                                         | VK                                                                | Date                        |
| <b>Design Example 6:</b> Design a bolted et<br>ISMB 400 beam and an ISHB 200 @ 40<br>hogging factored bending moment of 1<br>shear of 150 kN. Use HSFG bolts of diam                                                                                                                                                      | nd plate conne<br>) kg/m column s<br>50 kN-m and a<br>peter 22 mm.                      | ction between an<br>o as to transfer a<br>vartical factored       |                             |
| <i>ISHB</i><br>200<br><i>ISMB 400</i><br><i>M=150 kN m</i><br><i>V=150 kN</i>                                                                                                                                                                                                                                             |                                                                                         |                                                                   |                             |
| 1) bolt forces<br>taking moment about the centre of the<br>contribution of bottom bolts and denot<br>$4F \times 384 = 150 \times 10^3$<br>F = 97.6 kN                                                                                                                                                                     | bottom flange at<br>ting the force in                                                   | nd neglecting the<br>the top bolts by F                           |                             |
| tension capacity of M22 bolt = $0.9P_o$ = allowable prying force $Q = 159.3-97.6$                                                                                                                                                                                                                                         | = 159.3 kN<br>= 61.7 kN                                                                 |                                                                   |                             |
| 2) design for prying action<br>try 30 mm thick end plate of width $b_e =$<br>distance from the centre line of bolt to p<br>edge distance or $1.1T\sqrt{\beta Po/Py} = 1.1 \times 3$<br>n = 40 mm<br>assuming 10 mm fillet weld,<br>distance from center line of bolt to toe of<br>moment at the toe of the weld = Fb-Qn = | 180 mm<br>prying force n is<br>20 √(2×512/250)<br>fillet weld b = 60<br>= 97.6×50-61.7> | the minimum of<br>) = 55.66 mm<br>0-10 = 50 mm;<br>«40 = 2412 N-m |                             |
| <i>effective width of end plate per bolt w =</i>                                                                                                                                                                                                                                                                          | <i>be</i> /2 = 180/2 =                                                                  | 90 mm                                                             |                             |
| <i>moment capacity</i> = $(250/1.15)(90 \times 30^2)$                                                                                                                                                                                                                                                                     | /4)=4402 N-m >                                                                          | 2412 N-m Safe !                                                   | $(py/1.15) \times (wT^2/4)$ |

| Structural Steel                                                                                                           | Job No:                    | Sheet 2 of 2      | Rev                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------------------------------------------------------------------------------------|
| Job Title: Bolted End Plate Com                                                                                            |                            |                   | nection                                                                                            |
| Design Project                                                                                                             | workea Examp               | 1e - 0<br>Made by | Date 01-10-00                                                                                      |
|                                                                                                                            |                            | SRSK              | Date 01 10 00                                                                                      |
| Colorlation Shoot                                                                                                          |                            | Checked by        | Date                                                                                               |
| Calculation Sheet                                                                                                          |                            | VK                |                                                                                                    |
| $min \ Q = \frac{50}{2 \times 40} \left[ 97.6 - \frac{2 \times 1.5 \times 0.587 \times 9}{27 \times 40 \times 50} \right]$ | $\frac{90\times30^4}{0^2}$ |                   | $Q = \frac{b}{2n} \left[ F - \frac{\beta \gamma P_o w T^4}{27 n b^2} \right]$<br>$\beta = 2 (non-$ |
| $Q = 31.8 \ kN < 61.7 \ kN$ OK                                                                                             |                            |                   | preloaded)<br>$\gamma = 1.5$ (for factored                                                         |
| 3) Check for combined shear and tension                                                                                    |                            |                   | load)                                                                                              |
| Shear capacity of M20 HSFG Ps $l = 87$                                                                                     | 7.6 kN                     |                   |                                                                                                    |
| Shear per bolt $Fs = 150/6 = 25 \ kN$                                                                                      |                            |                   |                                                                                                    |
| = (25.0/87.6) + (97.6+31.8)/159.3 = 0                                                                                      | .936 < 1.0 Saf             | fe !              | $F_s/P_{sl} + 0.8f_t/P_t$                                                                          |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |
|                                                                                                                            |                            |                   |                                                                                                    |



| Structural Steel                                                                                                                                                           | Job No:                                                                      | Sheet 2 of 2                          | Rev          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------|
| Job Title: Beam to Beam Connect                                                                                                                                            |                                                                              |                                       | ion          |
| Design Project                                                                                                                                                             | workea Examp                                                                 | Made by                               | Date 1-10-00 |
|                                                                                                                                                                            |                                                                              | SRSK                                  |              |
| Coloulation Shoot                                                                                                                                                          |                                                                              | Checked by                            | Date         |
| Calculation Sheet                                                                                                                                                          |                                                                              | VK                                    |              |
| 2) Connection to web of ISMB 600                                                                                                                                           |                                                                              |                                       |              |
| Try 6 bolts as shown in the Figure with                                                                                                                                    | n vertical pitch og                                                          | f 80 mm                               |              |
| For M20 Gr.8.8 HSFG bolts in single s<br>Slip resistance per bolt = $1.1 \times 0.45 \times$<br>Bearing capacity of web per bolt = $20$<br>Bolt value = $71.28 \text{ kN}$ |                                                                              |                                       |              |
| Assuming center of pressure 27.5 mm l                                                                                                                                      | below the top of t                                                           | the angle                             |              |
| horizontal shear force on bottom bolt a<br>= $(300/2) \times 50 \times 200/(50^2 + 125^2 + 200^2) =$                                                                       |                                                                              |                                       |              |
| vertical shear force per bolt = 300/6 =                                                                                                                                    | 50.0 kN                                                                      |                                       |              |
| resultant shear = $\sqrt{25.82^2 + 50^2} = 56.2$                                                                                                                           | 27 kN < bolt val                                                             | ue Safe!                              |              |
| 3) Check web of ISMB 400 for block shea                                                                                                                                    | r                                                                            |                                       |              |
| Block shear capacity = shear capacity<br>= 0.6×250×0.9×1.1(3×80+50-3<br>+ 0.5×250×1.1(45-0.5×22)×8.9                                                                       | of AB + 0.5×ten<br>5×22)×8.9×10 <sup>-3</sup><br>9×10 <sup>-3</sup> = 323.12 | sile capacity of BC<br>> 300 kN Safe! |              |
|                                                                                                                                                                            |                                                                              |                                       |              |