

Structural Steel		Job No:	Sheet 2 of 7	Rev
		Job Title: COMPOSITE SLAB		
Design Project		Worked Examp	ole - I Made by SSSR	Date $14_{-}05_{-}00$
			Made by SSSK	Date 14-05-00
Calculation	Sheet		Checked by PU	Date 08-08-00
Distance of plastic neutral axis above bas		se, $e_p = 33 mm$	n	
Resistance to vertical shear,		$V_{pa} = 49.2 \ kN/m.$		
For resistance to longitudinal shear, $m = 18$			T/mm^2	
		k = 0.0530	$0 N/mm^2$	
Modulus of elasticity of steel,		$E_a = 2.0 * 10^5 N/mm^2$		
2.0 Load Data:				
	$\underline{Loads}(kN/m^2)$	<u>Facto</u>	pred loads(kN/m ²)	
Imposed load	4.5	4.50	* 1.50 = 6.75	
Dead load of slab	2.41	2.41	* 1.35 = 3.25	
Construction load	1.5	1.50	* 1.50 = 2.25	
3.0 Profiled steel sheet	3.0 Profiled steel sheeting as shuttering:			
<u>3.1 Effective length of t</u>	he span:			
The profiled deck sheet is propped at the centre as shown in Fig. A2. Assume the top flanges of the supporting steel beams are at least 0.15 m wide and the width of the prop is neglected.				
The effective length of each of the two spans is given by				
$\ell_e = \frac{3500 - 150 + 70}{2} = 1710 mm$				
The depth of the sheeting is 70 mm.				

Structural Steel	Job No:	Sheet <i>4 of 7</i>	Rev
	Job Title: COMPOSITE SLAB		
Design Project	Worked Examp	ole - 1 Modo by SSSP	Data 14.05.00
		Made by 555K	Date 14-03-00
Calculation Sheet		Checked by PU	Date 08-08-00
3.3 Check for moment:			
Design moment = $M_{pa} / \gamma_{ap} = 4.92/1.15 =$	4.27 kN-m/m >	1.68 kN-m/m	
Hence, the profiled deck is safe in flexure			
<u>3.4 Check for shear:</u>			
Vertical shear rarely governs design of pa			
Design shear = $V_{pa} / \gamma_{ap} = 49.2/1.15 = 42.8 \text{ kN/m} > 5.64 \text{ kN/m}$			
Design shear is more than actual vertical			
3.5 Check for deflection:			
Design load at construction stage = $2.41 + 1.5 = 3.91 \text{ kN/m}^2$ (Assumed that the prop does not deflect).			
The maximum deflection in span AB, if B	C is unloaded, is		
$\delta_{max} = \frac{w\ell_e^4}{185 E_a I_p} = \frac{3.91 * 1.71^4}{185 * 0.20 * 0.57} = 1.6 mm$			
This is span/1068, which is very low.			
4.0 Composite slab:			
<u>4.1 Effective span: [Propping is removed]</u>			
Distance between centres of supports $= 3$			
Clear distance between the supports $+ eff$ = (3)			
Hence, effective length = $3.47 m$			

Structural Steel	Job No:	Sheet 5 of 7	Rev
	Job Title: COMPOSITE SLAB		
Design Project	workea Examp	Me - I Made by SSSR	Date 14-05-00
		Whate by 555K	Date 14-05-00
Calculation Sheet		Checked by PU	Date 08-08-00
4.2 Flexure and vertical shear:			
The design ultimate loading = $(w_{u, DL} + w_{u, DL})$	$v_{u, LL}) = 3.25 + 6$	$k.75 = 10.0 \ kN/m^2$	
Mid-span bending moment is			
$M_{sd} = 10.0 * (3.47)^2/8 = 15.1 \text{ kN-m/m}$			
For vertical shear consider effective span	n as 3.5 m.		
Then, vertical shear at supports is			
$V_{sd} = (\ 3.5 \ * \ 1.0 \ * \ 10.0)/2 = 17.5 \ kN/m$			
4.3 Check for moment:			
For the bending resistance, from equation (1) of previous chapter			
$N_{cf} = \frac{A_p f_{yp}}{\gamma_{ap}} = 1185 * \frac{0.28}{1.15} = 289 kN/m$			
Design compressive strength of the concr	ete =0.36 * 20 =	$= 7.2 \ N/mm^2$	
So, from equation (2) of a previous chapter, the depth of the stress block is			
$x = \frac{N_{cf}}{b(f_{ck})_{cu}} = \frac{289}{1 \times 7.2} = 40.1 mm$			
This is less than h_c , so from equation (4)			
$M_{p.Rd} = 289 (0.12 - 0.017) = 29.8 \text{ kN m/m} > 15.1 \text{ kN m/m}$			
Hence, the bending resistance is sufficien	t.		

Structural Steel	Job No:	Sheet 6 of 7	Rev
Design Droject	Job Title: COMPOSITE SLAB		
Design Project	Worked Examp	Made by SSSR	Date 14-05-00
Calculation Sheet		Checked by PU	Date 08-08-00
<u>4.4 Check for vertical shear:</u> [See Fig. A.	1]		
The shear resistance is given by equation	n (20) of previous	chapter.	
$b_o = 162 mm, \ b = 300 mm, \ d_p = 120$	mm.		
The area A_p is			
$A_p = 0.86 (162 - 26 + 66) = 174 \ mm^2,$			
$\rho = \frac{174}{162 * 120} = 0.009$			
and			
$k_{\nu} = 1.6 - 0.12 = 1.48 m$			
The basic shear strength is $\tau_{Rd} = 0.30$ previous chapter	0 N/mm², so fro	m equation (20) of	
$V_{v.Rd} = \frac{162}{300} * 120 * 0.3 * 1.48(1.2 + 0.36) =$	= 45 kN / m		
$V_{v.Rd} > V_{sd}$, hence composite slab is OK in	n shear.		
4.5 Check for longitudinal shear:			
Longitudinal shear is checked by 'm-k' n	iethod.		
b = 1.0 m $m = 184 l$	N/mm ²		
$d_p = 120 mm \qquad \qquad k = 0.053$	30 N/mm ²		
$A_p = 1185 \ mm^2/m \qquad \qquad \gamma_{vs} = 1.25$			
$\ell_s = \ell/4 = 3470/4 = 867 mm$			

Structural Stool	Job No:	Sheet 7 of 7	Rev
Sti uctui ai Steel	Job Title: CO	OMPOSITE SLAB	
Design Project	Worked Examp		
Designi i ojeet		Made by SSSR	Date 14-05-00
Calculation Sheet		Checked by PU	Date 08-08-00
The m-k method gives the vertical shear r	resistance as		
$V_{i,Rd} = bd_p \frac{\left[\frac{mA_p}{b\ell_s} + k\right]}{\gamma_{vs}} = (1000)(120)^{\left[\frac{1}{1000}\right]}$	$\frac{84 \times 1185}{000 \times 867} + 0.05$ 1.25	$\frac{3}{2} \times 10^{-3} = 29.2 kN/$	(m
The design vertical shear is 28.3 kN/m, longitudinal shear. Note partial safety fac	so composite s ctor for shear sti	slab is safe against uds is taken as 1.25.	
<u>4.6 Check for serviceability:</u>			
4.6.1 Cracking of concrete above support			
The steel beams should be provided by area of concrete, since the floor is pro provide reinforcement of			
$A_s = (0.4/100) * 1000 * 80 = 320 \text{ mm}^2/\text{m}.$			
4.6.2 Deflection			
In calculation of deflection, effects due and the presence of the reinforcement of neglected. Both effects reduce deflections	to the use of pr area, A _s , provia	ropped construction led for cracking are	
Span/depth = 3470/120 = 28.9 < 32 (For	end span)		
Hence, there is no need for deflection check.			