1.0 INTRODUCTION

In the previous chapter, the basic theory governing the behaviour of beams subjected to torsion was discussed. A member subjected to torsional moments would twist about a longitudinal axis through the shear centre of the cross section. It was also pointed out that when the resultant of applied forces passed through the longitudinal shear centre axis no torsion would occur. In general, torsional moments would cause twisting and warping of the cross sections.

When the torsional rigidity $(G J)$ is very large compared with its warping rigidity $(E \Gamma)$, the section would effectively be in uniform torsion and warping moment would unlikely to be significant from the designer's perspective. Examples of this behaviour are closed hot-rolled sections (e.g. rectangular or square hollow sections) and rolled angles and Tees. Note that warping moment is developed only if warping deformation is restrained. Warping deformation in angle and T-sections are not small, only warping moment would be small. On the other hand, most thin walled open sections have much smaller torsional rigidity ($G J$) compared with warping rigidity ($E \Gamma$) values and these sections will be exhibiting significant warping moment. Hot rolled I sections and H sections would exhibit torsional behaviour in-between these two extremes and the applied loading is resisted by a combination of uniform torsion and warping torsion.

2.0 DESIGNING FOR TORSION IN PRACTICE

Any structural arrangement in which the loads are transferred to an I beam by torsion is not an efficient one for resisting loads. The message for the designers is "Avoid Torsion - if you can ". In a very large number of practical designs, the loads are usually applied in a such a manner that their resultant passes through the centroid. If the section is doubly symmetric (such as I or H sections) this automatically eliminates torsion, as the shear centre and centroid of the symmetric cross section coincide. Even otherwise load transfer through connections may - in many cases - be regarded as ensuring that the loads are effectively applied through the shear centre, thus eliminating the need for designing for torsion. Furthermore, in situations where the floor slabs are supported on top flanges of channel sections, the loads may effectively be regarded as being applied through the shear centre since the flexural stiffness of the attached slab prevents torsion of the channel.

Where significant eccentricity of loading (which would cause torsion) is unavoidable, alternative methods of resisting torsion efficiently should be investigated. These include
©Copyright reserved
design using box sections, tubular (hollow) sections or lattice box girders which are fully triangulated on all faces. All these are more efficient means of resisting torsional moments compared with I or H sections. Unless it is essential to utilise the torsional resistance of an I section, it is not necessary to take account of it. The likely torsional effects due to a particular structural arrangement chosen should be considered in the early stages of design, rather than left to the final stages, when perhaps an inappropriate member has already been chosen.

3.0 PURE TORSION AND WARPING

In the previous chapter, the concepts of uniform torsion and warping torsion were explained and the relevant equations derived.

When a torque is applied only at the ends of a member such that the ends are free to warp, then the member would develop only pure torsion.
The total angle of twist (ϕ) over a length of z is given by
$\phi=\frac{T_{q} \cdot z}{G J}$
where $T_{q}=$ applied torque
$G J=$ Torsional Rigidity
When a member is in non-uniform torsion, the rate of change of angle of twist will vary along the length of the member. The warping shear stress $\left(\tau_{w}\right)$ at a point is given by

$$
\begin{equation*}
\tau_{w}=-\frac{E S_{w m s} \phi^{\prime \prime \prime}}{t} \tag{2}
\end{equation*}
$$

where $E=$ Modulus of elasticity
$S_{w m s}=$ Warping statical moment at a particular point S chosen.

The warping normal stress (σ_{w}) due to bending moment in-plane of flanges (bi-moment) is given by
$\sigma_{w}=-E \cdot W_{n w f s} . \phi^{\prime \prime}$
where $W_{n w f s}=$ Normalised warping function at the chosen point S.

4.0 COMBINED BENDING AND TORSION

There will be some interaction between the torsional and flexural effects, when a load produces both bending and torsion. The angle of twist ϕ caused by torsion would be amplified by bending moment, inducing additional warping moments and torsional shears. The following analysis was proposed by Nethercot, Salter and Malik in reference (2).

4.1 Maximum Stress Check or "Capacity check"

The maximum stress at the most highly stressed cross section is limited to the design strength $\left(f_{y} / \gamma_{m}\right)$. Assuming elastic behaviour and assuming that the loads produce bending about the major axis in addition to torsion, the longitudinal direct stresses will be due to three causes.
$\left.\begin{array}{l}\sigma_{b x}=\frac{M_{x}}{Z_{x}} \\ \sigma_{b y t}=\frac{M_{y t}}{Z_{y}} \\ \sigma_{w}=E \cdot W_{n w f s} \cdot \phi^{\prime \prime}\end{array}\right\}$
$\sigma_{b y t}$ is dependent on $M_{y t}$, which itself is dependent on the major axis moment M_{x} and the twist ϕ.

$$
\begin{equation*}
M_{y t}=\phi M_{x} \tag{4}
\end{equation*}
$$

Thus the "capacity check" for major axis bending becomes:
$\sigma_{b x}+\sigma_{b y t}+\sigma_{w} \leq f_{y} / \gamma_{m}$.
Methods of evaluating $\phi, \phi^{\prime}, \phi^{\prime \prime}$ and $\phi^{\prime \prime \prime}$ for various conditions of loading and boundary conditions are given in reference (2).

4.2 Buckling Check

Whenever lateral torsional buckling governs the design (i.e. when p_{b} is less than f_{y}) the values of σ_{w} and $\sigma_{b y t}$ will be amplified. Nethercot, Salter and Malik have suggested a simple "buckling check" along lines similar to BS 5950, part 1

$$
\begin{equation*}
\frac{\bar{M}_{x}}{M_{b}}+\frac{\left(\sigma_{b y t}+\sigma_{w}\right)}{\left(f_{y} / \gamma_{m}\right)}\left[1+0.5 \frac{\bar{M}_{x}}{M_{b}}\right] \leq 1 \tag{6}
\end{equation*}
$$

where $\overline{M_{x}}$, equivalent uniform moment $=m_{x} M_{x}$ and M_{b}, the buckling resistance moment $=\frac{M_{E} M_{p}}{\phi_{B}+\left(\phi_{B}{ }^{2}-M_{E} M_{p}\right)^{1 / 2}}$
in which $\quad \phi_{B}=\frac{M_{p}+\left(\eta_{L T}+1\right) M_{E}}{2}$
M_{P}, the plastic moment capacity $=f_{y} \cdot Z_{p} / \gamma_{m}$
$Z_{p}=$ the plastic section modulus
M_{E}, the elastic critical moment $=\frac{M_{p} \pi^{2} E}{\lambda_{L T}{ }^{2} \cdot f_{y} / \gamma_{m}}$
where $\lambda_{L T}$ is the equivalent slenderness.

4.3 Applied loading having both Major axis and Minor axis moments

When the applied loading produces both major axis and minor axis moments, the "capacity checks" and the "buckling checks" are modified as follows:

Capacity check:
$\sigma_{b x}+\sigma_{b y t}+\sigma_{w}+\sigma_{b y} \leq f_{y} / \gamma_{m}$

Buckling check:

$$
\begin{equation*}
\frac{\bar{M}_{x}}{M_{b}}+\frac{\overline{M_{y}}}{f_{y} Z_{y} / \gamma_{m}}+\frac{\left(\sigma_{b y t}+\sigma_{w}\right)}{\left(f_{y} / \gamma_{m}\right)}\left[1+0.5 \frac{\bar{M}_{x}}{M_{b}}\right] \leq 1 \tag{8}
\end{equation*}
$$

where $\bar{M}_{y}=m_{y} M_{y}$

$$
\sigma_{\text {byt }}=M_{y} / Z_{y}
$$

4.4 Torsional Shear Stress

Torsional shear stresses and warping shear stresses should also be amplified in a similar manner:

$$
\begin{equation*}
\tau_{v t}=\left(\tau_{t}+\tau_{w}\right)\left(1+0.5 \frac{\bar{M}_{x}}{M_{b}}\right) \tag{9}
\end{equation*}
$$

This shear stress should be added to the shear stresses due to bending in checking the adequacy of the section.

5.0 DESIGN METHOD FOR LATERAL TORSIONAL BUCKLING

The analysis for the lateral torsional buckling is very complex because of the different types of structural actions involved. Also the basic theory of elastic lateral stability cannot be directly used for the design purpose because

- the formulae for elastic critical moment M_{E} are too complex for routine use and
- there are limitations to their extension in the ultimate range

A simple method of computing the buckling resistance of beams is given below. In a manner analogous to the Perry-Robertson Method for columns, the buckling resistance moment, M_{b}, is obtained as the smaller root of the equation

$$
\begin{equation*}
\left(M_{E}-M_{b}\right)\left(M_{p}-M_{b}\right)=\eta_{L T} . M_{E} M_{b} \tag{10}
\end{equation*}
$$

As explained in page $3, M_{b}$ is given by,

$$
M_{b}=\frac{M_{E} M_{p}}{\phi_{B}+\left({\phi_{B}^{2}}^{2}-M_{E} M_{p}\right)^{1 / 2}}
$$

where $\quad \phi_{B}=\frac{M_{p}+\left(\eta_{L T}+1\right) M_{E}}{2}$
[As defined above, $M_{E}=$ Elastic critcal moment
$M_{p}=f_{y} \cdot Z_{p} / \gamma_{m}$
$\eta_{L T}=$ Perry coefficient, similar to column buckling coefficient
$Z_{p} \quad=$ Plastic section modulus]
In order to simplify the analysis, BS5950: Part 1 uses a curve based on the above concept (Fig. 1) (similar to column curves) in which the bending strength of the beam is expressed as a function of its slenderness $\left(\lambda_{L T}\right)$. The design method is explained below.

The buckling resistance moment M_{b} is given by

$$
\begin{equation*}
M_{b}=p_{b} \cdot Z_{p} \tag{11}
\end{equation*}
$$

where $p_{b}=$ bending strength allowing for susceptibility to lateral -torsional buckling.

$$
Z_{p}=\text { plastic section modulus. }
$$

It should be noted that $p_{b}=f_{y}$ for low values of slenderness of beams and the value of p_{b} drops, as the beam becomes longer and the beam slenderness, calculated as given below, increases. This behaviour is analogous to columns.

The beam slenderness $\left(\lambda_{L T}\right)$ is given by,

$$
\begin{equation*}
\lambda_{L T}=\sqrt{\pi^{2} \frac{E}{f_{y}}} \cdot \bar{\lambda}_{L T} \tag{12}
\end{equation*}
$$

where $\quad \bar{\lambda}_{L T}=\sqrt{\frac{M_{p}}{M_{E}}}$

Fig. 1 Bending strength for rolled sections of design strength 275 N/mm ${ }^{2}$ according to BS 5950

Fig. 2 is plotted in a non-dimensional form comparing the observed test data with the two theoretical values of upper bounds, viz. M_{p} and M_{E}. The test data were obtained from a typical set of lateral torsional buckling data, using hot-rolled sections. In Fig. 2 three distinct regions of behaviour can be observed:-

- stocky beams which are able to attain the plastic moment M_{p}, for values of $\overline{\lambda_{L T}}$ below about 0.4.
- Slender beams which fail at moments close to M_{E}, for values of $\bar{\lambda}_{L T}$ above about 1.2
- beams of intermediate slenderness which fail to reach either M_{p} or M_{E}. In this case $0.4<\bar{\lambda}_{L T}<1.2$

Beams having short spans usually fail by yielding. So lateral stability does not influence their design. Beams having long spans would fail by lateral buckling and these are termed "slender". For the practical beams which are in the intermediate range without lateral restraint, design must be based on considerations of inelastic buckling.

In the absence of instability, eqn. 11 permits that the value of f_{y} can be adopted for the full plastic moment capacity p_{b} for $\lambda_{L T}<0.4$. This corresponds to $\lambda_{L T}$ values of around 37 (for steels having $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$) below which the lateral instability is NOT of concern.

Fig. 2 Comparison of test data (mostly I sections) with theoretical elastic critical moments
For more slender beams, p_{b} is a function of $\lambda_{L T}$ which is given by,
$\lambda_{L T}=u v \frac{\ell}{r_{y}}$
u is called the buckling parameter and x, the torsional index.
For flanged sections symmetrical about the minor axis,

$$
u=\left(\frac{4 Z_{p}^{2} \gamma}{A^{2} h_{s}{ }^{2}}\right)^{1 / 4} \text { and } \quad x=0.566 h_{s}(A / J)^{1 / 2}
$$

For flanged sections symmetrical about the major axis

$$
u=\left(\frac{I_{y} \cdot Z_{p}^{2} \gamma}{A^{2} \Gamma}\right)^{1 / 4} \quad \text { and } \quad x=1.132\left(\frac{A \Gamma}{I_{y} J}\right)^{1 / 2}
$$

In the above $Z_{p}=$ plastic modulus about the major axis

$$
\begin{aligned}
\gamma & =\left(1-\frac{I_{y}}{I_{x}}\right) \\
A & =\text { cross sectional area of the member }
\end{aligned}
$$

$$
\begin{aligned}
\Gamma & =\text { torsional warping constant } \cong \frac{h_{s}^{2} t_{1} t_{2} b_{1}^{3} b_{2}^{3}}{12\left(t_{1} b_{1}^{3}+t_{2} b_{2}^{3}\right)} \\
J & =\text { the torsion constant } \\
h_{s} & =\text { the distance between the shear centres of the flanges } \\
t_{1}, t_{2} & =\text { flange thicknesses } \\
b_{1}, b_{2} & =\text { flange widths }
\end{aligned}
$$

We can assume

$$
\begin{aligned}
u & =0.9 \text { for rolled } U B s, U C s, \text { RSJs } \text { and channels } \\
& =1.0 \text { for all other sections. } \\
v & =a \text { function of }\left(\frac{\ell}{r_{y}}, x\right) \text { is given in Table } 14 \text { of BS5950: Part I } \\
& \text { (for a preliminary assessment } v=1 \text {) }
\end{aligned}
$$

$x=D / T$ providing the above values of u are used.

5.1 Unequal flanged sections

For unequal flanged sections, eqn. 11 is used for finding the buckling moment of resistance. The value of $\lambda_{L T}$ is determined by eqn. 13 using the appropriate section properties. In that equation u may be taken as 1.0 and v includes an allowance for the degree of monosymmetry through the parameter $N=I_{c} /\left(I_{c}+I_{t}\right)$. Table 14 of BS5950: Part 1 must now be entered with $\left(\ell_{E} / r_{y}\right) / x$ and N.

5.2 Evaluation of differential equations

For a member subjected to concentrated torque with torsion fixed and warping free condition at the ends (torque applied at varying values of αL), the values of ϕ and its differentials are given by

For $0 \leq z \leq \alpha \ell, \quad \phi=\frac{T_{q} \cdot a}{G J}\left\{(1-\alpha) \frac{z}{a}+\left[\frac{\sinh \frac{\alpha \ell}{a}}{\tanh \frac{\ell}{a}}-\cosh \frac{\alpha \ell}{a}\right] \sinh \frac{z}{a}\right\}$

$$
\begin{aligned}
\phi^{\prime} & =\frac{T_{q}}{G J}\left\{(1-\alpha)+\left[\frac{\sinh \frac{\alpha \ell}{a}}{\tanh \frac{\ell}{a}}-\cosh \frac{\alpha \ell}{a}\right] \cosh \frac{z}{a}\right\} \\
\phi^{\prime \prime} & =\frac{T_{q}}{G J a}\left[\frac{\sinh \frac{\alpha \ell}{a}}{\tanh \frac{\ell}{a}}-\cosh \frac{\alpha \ell}{a}\right] \sinh \frac{z}{a} \\
\phi^{\prime \prime \prime} & =\frac{T_{q}}{G J a^{2}}\left[\frac{\sinh \frac{\alpha \ell}{a}}{\tanh \frac{\ell}{a}}-\cosh \frac{\alpha \ell}{a}\right] \cosh \frac{z}{a}
\end{aligned}
$$

Similar equations are available for different loading cases and for different values of $\alpha \ell$. Readers may wish to refer Ref. (2) for more details. We are unable to reproduce these on account of copyright restrictions.

6.0 SUMMARY

This chapter is aimed at explaining a simple method of evaluating torsional effects and to verify the adequacy of a chosen cross section when subjected to torsional moments. The method recommended is consistent with BS 5950: Part 1.

7.0 REFERENCES

(1) British Standards Institution, BS 5950: Part 1: 1985. Structural use of steelwork in Building part 1: Code of Practice for design in simple and continuous construction: hot rolled sections. BSI, 1985.
(2) Nethercot, D. A., Salter, P. R., and Malik, A. S. Design of Members Subject to Combined Bending and Torsion, The Steel construction Institute, 1989.
(3) Steelwork design guide to BS 5950: Part 1 1985, Volume 1 Section properties and member capacities. The Steel Construction Institute, 1985.
(4) Introduction to Steelwork Design to BS 5950: Part 1, The Steel Construction Institute, 1988.

Structural Steel Design Project	Job No.	Sheet 1 of $\mathbf{1 4}$ Rev.	
	Job title: Design of members subjected to bending and torsion		
	Worked Example. Flexural member		
CALCULATION SHEET		Made by $\boldsymbol{R S P}$	Date Jan. 2000
		Checked by $\boldsymbol{R N}$	Date Jan. 2000

Example 1

The beam shown below is unrestrained along its length. An eccentric load is applied to the bottom flange at the centre of the span in such a way that it does not provide any lateral restraint to the member.
The end conditions are assumed to be simply supported for bending and fixed against torsion but free for warping. For the factored loads shown, check the adequacy of the trial section.

Replace the actual loading by an equivalent arrangement, comprising a vertical load applied through the shear centre and a torsional moment as shown below.

	Structural Steel Design Project	Job No.	Sheet 14 of 14	Rev.
		Job title: Design of members subjected to bending and torsion		
		Worked Example. Flexural member		
	CALCULATION SHEET		Made by \quad RSP	Date Jan. 2000
			Checked by RN	Date Jan. 2000
	Shear strength, $f_{v}=0.6 f_{y} / \gamma_{m}=0.6 \times 250 / 1.15=130 \mathrm{~N} / \mathrm{mm}^{2}$			
	Since $\tau<f_{v} \quad 27.9$	$30 \mathrm{~N} / \mathrm{mm}$		
	Section is adequate for shear			

Referring back to the determination of the maximum angle of twist ϕ, in order to obtain the value at working load it is sufficient to replace the value of torque T_{q} with the working load value as ϕ is linearly dependent on T_{q}. Since T_{q} is due to solely the imposed point load W, dividing by the appropriate value of γ_{f} will give :-
\therefore Working load value of T_{q} is $\frac{7.5}{1.6}=4.7 \mathrm{kNm}$
the corresponding value of $\phi=\frac{0.026}{1.6}=0.016 \mathrm{rads}=0.93^{\circ}$
On the assumption that a maximum twist of 2° is acceptable at working load, in this instance the beam is satisfactory.

Check for combined bending and torsion

(i) Buckling check

$$
\frac{\overline{M_{x}}}{M_{b}}+\frac{\left(\sigma_{b y t}+\sigma_{w}\right)}{f_{y} / \gamma_{m}}\left[1+0.5 \frac{\overline{M_{x}}}{M_{b}}\right] \leq 1
$$

Since slenderness ratio ($\ell_{E} / r_{y}=4000 / 82.3=48.6$) is less than the limiting value $\left(350 \times \frac{275}{250} \times \frac{250}{f_{y}}=385\right)$ given in BS 5950 Part 1, table 38, lateral torsional buckling need not be considered..

Structural Steel Design Project	Job No.	Sheet 5 of 6	Rev.
	Job title: Design of members subjected to bending and torsion		
	Worked Example.Flexural member		
CALCULATION SHEET		Made by \quad RSP	Date Jan 2000
		Checked by RN	Date Jan 2000
$\begin{aligned} \sigma_{b x}=\frac{102 \times 10^{6}}{522 \times 10^{3}} & =196 \mathrm{~N} / \mathrm{mm}^{2} \\ 196+0.195+0 & =196.2<217 \mathrm{~N} / \mathrm{mm}^{2} \\ & \therefore \underline{\boldsymbol{O} . \boldsymbol{K}} \end{aligned}$ Shear stresses due to bending (at Ultimate Limit state)			
Maximum value occurs in the web at the support. $\begin{aligned} \tau_{b w}= & \frac{F_{V A} \cdot Q_{w}}{I_{x} \cdot t_{1}} \\ Q_{w}= & A_{1} \cdot \bar{y} \\ A_{1}= & \frac{A}{2} \\ \bar{y}= & \frac{150 \times 8 \times \frac{150}{2} \times 2+184 \times 8 \times 146}{A_{1}} \times 10^{-3}=\frac{395}{A_{1}} \mathrm{~cm} \\ & \therefore Q_{w}=A_{1} \times \frac{395}{A_{1}}=395 \mathrm{~cm}^{3} \\ \tau_{b w}= & \frac{52 \times 10^{3} \times 395 \times 10^{3}}{9798 \times 10^{4} \times 2 \times 8}=13.1 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Shear stresses due to torsion (at Ultimate limit State) $\tau_{t}=\frac{T_{0}}{C}=\frac{T_{q}}{2 C}=\frac{7.5 \times 10^{6}}{2 \times 837 \times 10^{3}}=4.5 \mathrm{~N} / \mathrm{mm}^{2}$			

