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BEAMS SUBJECTED TO TORSION AND BENDING -I 

 

 
1.0 INTRODUCTION 

 

When a beam is transversely loaded in such a manner that the resultant force passes 

through the longitudinal shear centre axis, the beam only bends and no torsion will occur. 

When the resultant acts away from the shear centre axis, then the beam will not only bend 

but also twist. 

 

When a beam is subjected to a pure bending moment, originally plane transverse sections 

before the load was applied, remain plane after the member is loaded. Even in the 

presence of shear, the modification of stress distribution in most practical cases is very 

small so that the Engineer’s Theory of Bending is sufficiently accurate. 

 

If a beam is subjected to a twisting moment, the assumption of planarity is simply 

incorrect except for solid circular sections and for hollow circular sections with constant 

thickness. Any other section will warp when twisted. Computation of stress distribution 

based on the assumption of planarity will give misleading results. Torsional stiffness is 

also seriously affected by this warping. If originally plane sections remained plane after 

twist, the torsional rigidity could be calculated simply as the product of the polar moment 

of inertia (Ip  = Ixx + Iyy) multiplied by (G), the shear modulus, viz. G. (Ixx + Iyy). Here Ixx 

and Iyy are the moments of inertia about the principal axes. This result is accurate for the 

circular sections referred above. For all other cases, this is an overestimate; in many 

structural sections of quite normal proportions, the true value of torsional stiffness as 

determined by experiments is only 1% - 2% of the value calculated from polar moment of 

inertia. 

 

It should be emphasised that the end sections of a member subjected to warping may be 

modified by constraints. If the central section remains plane, for example, due to 

symmetry of design and loading, the stresses at this section will differ from those based 

on free warping. Extreme caution is warranted in analysing sections subjected to torsion. 

   

2.0 UNIFORM AND NON-UNIFORM TORSION 

 

2.1 Shear Centre and Warping 

 

Shear Centre is defined as the point in the cross-section through which the lateral (or 

transverse) loads must pass to produce bending without twisting.  It is also the centre of 

rotation, when only pure torque is applied. The shear centre and the centroid of the 

cross section will coincide, when section has two axes of symmetry. The shear centre 

will be on the axis of symmetry, when the cross section has one axis of symmetry. 
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Table 1: Properties of Sections 
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where O = shear centre; J = torsion constant; Cw = warping constant 

 

If the loads are applied away from the shear centre axis, torsion besides flexure will be 

the evident result. The beam will be subjected to stresses due to torsion, as well as due to 

bending.  

 

The effect of torsional loading can be further split into two parts, the first part causing 

twist and the second, warping. These are discussed in detail in the next section. 

 

Warping of the section does not allow a plane section to remain as plane after twisting. 

This phenomenon is predominant in Thin Walled Sections, although consideration will 

have to be given to warping occasionally in hot rolled sections. An added characteristic 

associated with torsion of non-circular sections is the in-plane distortion of the cross-

section, which can usually be prevented by the provision of a stiff diaphragm. Distortion 

as a phenomenon is not covered herein, as it is beyond the scope of this chapter.  

 

Methods of calculating the position of the shear centre of a cross section are found in 

standard textbooks on Strength of Materials.  

 

2.2 Classification of Torsion as Uniform and Non-uniform  

 

As explained above when torsion is applied to a structural member, its cross section may 

warp in addition to twisting.  If the member is allowed to warp freely, then the applied 

torque is resisted entirely by torsional shear stresses (called St. Venant's torsional shear 

stress).  If the member is not allowed to warp freely, the applied torque is resisted by St. 

Venant's torsional shear stress and warping torsion.  This behaviour is called non-

uniform torsion. 

 

Hence (as stated above), the effect of torsion can be further split into two parts: 

 

 Uniform or Pure Torsion (called St. Venant's torsion) - Tsv 

 Non-Uniform Torsion, consisting of St.Venant's torsion (Tsv) and warping torsion 

(Tw). 

 

2.3 Uniform Torsion in a Circular Cross Section 

 

Let us consider a bar of constant circular cross section subjected to torsion as shown in 

Fig. 1.  In this case, plane cross sections normal to the axis of the member remain plane 

after twisting, i.e. there is no warping. The torque is solely resisted by circumferential 

shear stresses caused by St. Venant's torsion. Its magnitude varies as its distance from the 

centroid. 

 

For a circular section, the St. Venant's torsion is given by 
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where,        -   angle of twist 

  G    -  modulus of rigidity 

  Tsv  - St. Venant's torsion. 

Ip      - the polar moment of inertia  

  z     -    direction along axis of the member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Fig. 1Twisting of circular section. 

 

2.4 Uniform Torsion in Non-Circular Sections 
 

When a torque is applied to a non-circular cross section (e.g. a rectangular cross section), 

the transverse sections which are plane prior to twisting, warp in the axial direction, as 

described previously, so that a plane cross section no longer remains plane after twisting. 

However, so long as the warping is allowed to take place freely, the applied load is still 

resisted by shearing stresses similar to those in the circular bar. The St.Venant’s torsion 

(Tsv) can be computed by an equation similar to equation (1) but by replacing Ip by J, the 

torsional constant. The torsional constant (J) for the rectangular section can be 

approximated as given below: 

 

                                                  J = C. bt3                                                                    (1.a)   

    

where b and t are the breadth and thickness of the rectangle. C is a constant depending 

upon (b/t) ratio and tends to 1/3 as b/t increases. 

 

 

           Then  ,                                                                                                                (1.b) 

 

 

2.4.1 Torsional Constant (J) for thin walled open sections made up of rectangular  

         elements 

 

Torsional Constant (J) for members made up of rectangular plates (see Fig. 2) may be 

computed approximately from  
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                                                                                                                  `                    (1.c) 

 

in which bi and ti are length and thickness respectively of any element of the section. 

 

 

 

 

 

 

 

 

 

 

                      Fig. 2.  Thin walled open section made of rectangular elements 

 

In many cases, only uniform (or St. Venant's) torsion is applied to the section and the rate 

of change of angle of twist is constant along the member and the ends are free to warp 

(See Fig. 3) 

 

 

 

 

 

 

 

 

 

In this case the applied torque is resisted entirely by shear stresses and no warping 

stresses result. 

 

The total angle of twist   is given by  

 

 

 

where T  = Applied Torsion  = Tsv 

 

(Note: in this case only St.Venant's Torsion is applied) 

 

The maximum shear stress in the element of thickness t is given by  

 

 

 

Fig. 4 gives the corresponding stress pattern for an I section. 
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Fig.3  Uniform Torsion (Constant Torque : Ends are free to warp) 
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3.0 NON-UNIFORM TORSION 

 

When warping deformation is constrained, the member undergoes non-uniform torsion. 

Non-uniform torsion is illustrated in Fig. 5  where an I-section fixed at one end is 

subjected to torsion at the other end.   Here the member is restrained from warping freely 

as one end is fixed. The warping restraint causes bending deformation of the flanges in 

their plane in addition to twisting. The bending deformation is accompanied by a shear 

force in each flange. 

 

The total non-uniform torsion (Tn) is given by 

 

Tn =  Tsv  + T w                                  (4) 

 

where Tw is the warping torsion. 

 

Shear force Vf in each flange is given by 

 

where Mf is the bending moment in each flange. Since, the flanges bend in opposite 

directions, the shear forces in the two flanges are oppositely directed and form a couple. 

This couple, which acts to resist the applied torque, is called warping torsion.   

 

For the I-section shown in Fig. 5, warping torsion is given by 

 

Tw = Vf .h                                                         (6) 

 

The bending moment in the upper flange is given by 
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Fig.4  Stress pattern due to pure torsion 

(Shear stresses are enlarged for clarity) 
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Fig. 5  Non uniform Torsion:Twisting of Non-Circular Section restrained 

against free warping (Constant Torque : End warping is prevented ) 

 

 

in which If is the moment of inertia of flange about its strong axis (i.e. the vertical axis) 

and u, the lateral displacement of the flange centreline which is given by  

 

 

 

On substituting eq. 8  in eq. 7 we get 

 

 

 

 

On simplification by substituting eqn.(9) into eqn. (6), we obtain the value of warping 

torsion as,  

 

 

 

The term If h
2 /2 is called the warping constant () for the cross-section. 

 

then,  

 

 

in which                                       (for an I-section) 

 

E  is termed as the warping rigidity of the section, analogous to GJ, the St. Venant's 

torsional stiffness. The torque will be resisted by a combination of St.Venant's shearing 

stresses and warping torsion. Non-uniform torsional resistance (Tn ) at any cross-section 

is therefore given by the sum of St.Venant's torsion (Tsv) and warping torsion (T w). 
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Thus, the differential equation for non-uniform torsional resistance Tn(z) can be written as 

the algebraic sum of the two effects, due to St.Venant’s Torsion and Warping Torsion.   

           

 

 

 

                                                                        (for  an I-section) 

              

In the above, the first term on the right hand side (depending on GJ) represents the 

resistance of the section to twist and the second term represents the resistance to warping 

and is dependent on E. 

 

In the example considered (Fig. 5), the applied torque Ta is constant along the length, , 

of the beam .  For equilibrium, the applied torque,  Ta, should be equal to torsional 

resistance Tn.  

 

The boundary conditions are: (i) the slope of the beam is zero when z = 0 and (ii) the BM 

is zero when z =   i.e. at the free end. 

The solution of equation (13.a) is 

 

 

 

 

 

 

in which             a2      = 

 

Since the flexural rigidity  EIf and torsional rigidity GJ are both measured in the same 

units (N.mm 2), equation (15) shows that a has the dimensions of length and depends on 

the proportions of the beam.  Because of the presence of the second term in equation (14) 

the angle of twist per unit length  varies  along the  length of  the beam  even  though  the  

 

applied torsion, Ta ,remains constant.  When             is known, the St. Venant’s torsion  

 

(Tsv)   and  the  warping  torsion (Tw) may  be  calculated  or  any cross  section.  At  the  

built-in section (z = 0) and        = 0, hence we obtain from eq.(1) that Tsv = 0.  At this  

 

point, the entire torque is balanced by the moment of the shearing forces in each of the 

flanges. 





zwhen
dz

d

zwhen
dz

d

0

00

2

2



)14(1

















 



a
hCos

a

z
hCos

GJ

T

dz

d n






)15(
JG

EΓ

dz

d

dz

d

(13b).
2

.)(,

(13a)ΓΓ)(

2

3

3










h
EIGJzTor

EGJ
dz

d
E

dz

d
GJzT

fn

n



  BEAMS SUBJECTED TO BENDING AND TORSION-I 

Version II 17-9 

 

At the end z = , using equation (14) , we obtain  

 

 

If the length of the beam is large in comparison with the cross sectional dimensions,  

 

                           tends to approach 1, as  the second term is negligible.  Hence    

 

 

 

 

approaches             .   

 

The bending moment in the flange is found from 

 

 

where Mf is the bending moment in each flange.  

 

 

 

Substituting for        from eq. (14) we obtain 

 

 

 

 

 

The maximum bending moment at the fixed end is given by 

 

 

 

 

 

When   is several times larger than a, tan h ( /a) approaches 1, so that 

 

 

 

In other words, the maximum bending moment in each of the flanges will be the same as  
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that of cantilever of length a, and loaded at the free end by a force of              .  For a  

 

short beam  is small in comparison with a, so  

 

 

Hence     Mf max  =                                                                                                          (23)  

 

 

The range of values for Mf max  therefore varies from                                 as the length of 

the beam varies from a "short" to a "long" one. 

 

 

To calculate the angle of twist,  , we integrate the right hand side of equation (14) 

 

 

 

 

 

 

 

 

From equation (24), we obtain the value of   at the end (i.e.) when   z =  
 

 

 

 

 

For long beams               so equation (25) becomes  

 

 

 

 

 

The effect of the warping restraint on the angle of twist is equivalent to diminishing the 

length    of the beam to ( - a). 

 

Certain simple cases of the effect of Torsion in simply supported beams and cantilever 

are illustrated in Figures 6 and 7. 
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Fig.6  Torsion in simply supported beam with free end warping 
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4.0 AN APPROXIMATE METHOD OF TORSION ANALYSIS 

 

A simple approach is often adopted by structural designers for rapid design of steel 

structures subjected to torsion.  This method  (called the bi-moment method) is 

sufficiently accurate for practical purposes.  The applied torque is replaced by a couple of 

horizontal forces acting in the plane of the top and bottom flanges as shown in Fig. 8 and 

Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H 
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When a uniform torque is applied to an open section restrained against warping, the 

member itself will be in non-uniform torsion.  The angle of twist, therefore, varies along 

the member length. The rotation of the section will be accompanied by bending of flanges 

in their own plane.  The direct and shear stresses caused are shown in Fig.10. 

 

For an I section, the warping resistance can be interpreted in a simple way.  The applied 

torque Ta is resisted by a couple comprising the two forces H, equal to the shear forces in 

each flange.  These forces act at a distance equal to the depth between the centroids of 

each flange. 

 

Each of these flanges can be visualized as a beam subjected to bending moments 

produced by the forces H.  This leads to bending stresses  w  in the flanges.  These are 

termed Warping Normal Stresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magnitude of the warping normal stress at any particular point (w) in the cross 

section is given by  

 

                            w     =   - EWnwfs                                                                         (27) 

 

 

Y 

 

Rotation of cross 

section 

Fig. 10 Warping Stresses in Open Cross Section 
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where  Wnwfs  = normalised warping function at a particular point S in the cross section. 

 

An approximate method of calculating the normalised warping function for any section is 

described in Reference 3. The value of Wnwfs for an I -section is  given in section 5.3. 

The in-plane shear stresses are called Warping shear stresses.  They are constant across 

the thickness of the element.  Their magnitude varies along the length of the element.  

The magnitude of the warping shear stress at any given point is given by 

 

                                                                                                                                     (28) 

 

 

where Swms = Warping statical moment of area at a particular point S.  Values of warping 

normal stress and in-plane shear stress are tabulated in standard steel tables produced by 

steel makers. Section 5.3 gives these values for I and H sections. 

 

5.0 THE EFFECT OF TORSIONAL RIGIDITY (GJ) AND WARPING 

RIGIDITY (E )  

 

The warping deflections due to the displacement of the flanges vary along the length of 

the member.  Both direct and shear stresses are generated in addition to those due to 

bending and pure torsion.  As discussed previously, the stiffness of the member 

associated with the former stresses is directly proportional to the warping rigidity, E. 

 

When the torsional rigidity (GJ) is very large compared to the warping rigidity, E, then 

the section will effectively be in "uniform torsion".  Closed sections (eg. rectangular or 

square hollow sections) angles and Tees behave this way, as do most flat plates and all 

circular sections.  Conversely if GJ is very small compared with E, the member will 

effectively be subjected to warping torsion.  Most thin walled open sections fall under 

this category.  Hot rolled I and H sections as well as channel sections exhibit a torsional 

behaviour in between these two extremes.  In other words, the members will be in a state 

of non-uniform torsion and the loading will be resisted by a combination of uniform  

(St.Venant's) and warping torsion. 

 

5.1 End Conditions 

 

The end support conditions of the member influence the torsional behaviour significantly;  

three ideal situations are described below.  (It must be noted that torsional fixity is  

essential at least in one location to prevent the structural element twisting bodily).  

Warping fixity cannot be provided without also ensuring torsional fixity. 

 

 

The following end conditions are relevant for torsion calculations 

 

 Torsion fixed, Warping fixed:  This means that the twisting along the longitudinal (Z) 

axis and also the warping of cross section  at the end of the member are prevented.   

      ( =   = 0 at the end).  This is also called "fixed" end condition. 
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 Torsion fixed, Warping free:  This means that the cross section at the end of the 

member cannot twist, but is allowed to warp. ( = = 0). This is also called 

"pinned" end condition. 

 

 Torsion free, Warping free:  This means that the end is free to twist and warp.  The 

unsupported end of cantilever illustrates this condition.  (This is also called "free" end 

condition). 

 

Effective warping fixity is difficult to provide.  It is not enough to provide a connection 

which provides fixity for bending about both axes.  It is also necessary to restrain the 

flanges by additional suitable reinforcements.  It may be more practical to assume 

"warping free" condition even when the structural element is treated as "fixed" for 

bending.  On  the other hand, torsional fixity can be provided relatively simply by 

standard end connections. 

 

 

5.2     Procedures for checking adequacy in Flexure 

 

These procedures have been described in an earlier chapter dealing with "unrestrained 

bending".  Particular attention should be paid to lateral torsional buckling by evaluating 

the equivalent uniform moment       , such that 

 

 <  Mb 

 

where    = equivalent uniform moment 

Mb = lateral-torsional buckling resistance moment. 

 

If the beam is stocky (eg. due to closely spaced lateral restraints), the design will be 

covered by moment capacity Mc. 

 

In addition to bending stresses the shear stresses, b, due to plane bending have to be 

evaluated. 

 

Shear stress at any section is given by, 

 

where Q = Statical moment of area  of the shaded part (Fig. 11). 

  

For the web,   

 

                                    

For the flange, 

                                                                                                            

                                                                                                                 

where V = applied shear force 

 I = moment of inertia of the whole section 
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 T = flange thickness 

 Qw = statical moment of area for the web  

 Qf = statical moment of area for the flange. 

 t = web thickness 

 

    

      

 

 

 

 

 

 

 

 

 

Fig.11 

 

5.3 Cross Sectional Properties for Symmetrical I and H Sections 

 

For an I  or  H section subjected to torsion, the following properties will be useful (see 

Fig. 12).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where   Af = area of half the flange 

  yf = distance of neutral axis to the centroid of the area Af 

  A = total cross sectional area 

  yw = the distance from the neutral axis to the centroid of the area                    

    above neutral axis. 
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                                                                Fig.12 

 

6.0 CONCLUSIONS 

 

Analysis of a beam subjected to torsional moment is considered in this chapter. Uniform 

torsion (also called St.Venant’s torsion) applied to the beam would cause a twist. Non-

uniform torsion will cause both twisting and warping of the cross section. Simple 

methods of evaluating the torsional effects are outlined and discussed. 
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	Hence (as stated above), the effect of torsion can be further split into two parts:
	For a circular section, the St. Venant's torsion is given by
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	For the flange,
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