Structural Steel	Job No:	Sheet 1 of 18	Rev
Diractar an Steel	Job Title: PL	ATE GIRDER	
Design Project	Worked Examp	ole - 1 Mada by	Date 15.04.00
		SSSR	Date 13-04-00
Colculation Shoot		Checked by PU	Date 25-04-00
PROBLEM:			
The girder showed in Fig. E1 is fully throughout its span. The span is 36 m an shown in Fig. E1. Design a plate girder.	restrained agair d carries two co	nst lateral buckling ncentrated loads as	
Yield stress of steel, $f_y = 250 \text{ N/mm}$	m^2		
Material factor for steel, $\gamma_m = 1.15$			
Dead Load factor, $\gamma_{fd} = 1.35$			
Imposed load factor, $\gamma_{f\ell} = 1.50$			
$\begin{array}{c c} W_1 \\ \hline \\ 9000 \ mm \end{array} \begin{array}{c} W_1 \\ 18000 \ mm \end{array}$		9000 mm	
36000 mm			
Fig. E1 Example plate girder			
1.0 LOADING			
Dead load:			
Uniformly distributed load, w_d = 20Concentrated load, W_{1d} = 20Concentrated load, W_{2d} = 20	0 kN/ m (Includii 00 kN 00 kN	ng self-weight)	
Live load:			
Uniformly distributed load, $w_{\ell} = 3$.	5 kN/m		
Concentrated load, $W_{1\ell} = 4$	00 kN		
Concentrated load, $W_{2\ell} = 4$	00 kN		

Structu	ral Staal	Job No:	:	Sheet 2 of 1	8	Rev
Suuciu		Job Titl	e: PL	ATE GIRDEF	{	
Design	Project	Worked	l Examp	le - 1		I –
				Made by		Date 15-04-00
					SSSR	D / 05 04 00
Calculat	ion Sheet			Checked by	PU	Date 25-04-00
Factored Loads:						
$w' = w_d * \gamma_{fd}$ -	+ $w_{\ell} * \gamma_{f\ell} = 20 * 1.35$	5 + 35 *	1.5	= 79.5 kN/i	n	
$W'_1 = W_{1d} * \gamma_{fd}$ -	+ $W_{1\ell}^* \gamma_{f\ell} = 200 * 1.3$	85 + 400	* 1.5	$= 870 \ kN$		
$W'_2 = W_{2d} * \gamma_{fd} +$	$-W_{2\ell}*\gamma_{f\ell}=200*1.3$	85 + 400	* 1.5	= 870 kN		
2.0 BENDING	MOMENT AND SHI	EAR FOI	RCE			
	Bending moment (kN-m)	Sh	near force (kl	V)	
	1.2					-
UDL effect	$\left \frac{w^{2}\ell^{2}}{2} = \frac{79.5*36*36}{2}\right $	=12879		$w^{1}\ell$	=1431	
	8 8			2	_	
	WI					
Concentrated load	$\frac{w_{\ell}}{4} = 870*9$	= 7830		147	- 870	
ejjeci	4			VV	- 070	
ΤΟΤΑΙ		20700			2301	
101AL 20709 2301			-			
The design shear fo	rces and bending mon	nents are	shown	in Fig. E2.		
3.0 INITIAL SI	ZING OF PI ATE G	IRDER				
5.0 10111112.51		MDLK				
Depth of the plate g	<u>rirder:</u>					
		• •		. 1 . 1		
The recommended	The recommended span/depth ratio for simply supported girder varies					
between 12 for short span and 20 for long span girder. Let us consider depth of the girder as 2400 mm						
$\frac{\ell}{2} - \frac{36000}{150} - 150$						
$d = 2400^{-13.0}$						
Depth of 2400 mm is acceptable						

Structural Staal		Sheet 4 of 18	Rev	
Su uciui ai Sieei	Job Title: PL	Job Title: <i>PLATE GIRDER</i>		
Design Project	Worked Examp	le - 1	-	
J		Made by	Date 15-04-00	
		SSSR		
Calculation Sheet		Checked by	Date 25-04-00	
		PU		
<u>Flange:</u>				
$p_y = 250/1.15 = 217.4 \text{ N/mm}^2$				
Single flange area,				
$A_f = \frac{M_{\text{max}}}{d p_y} = \frac{20709 * 10^6}{2400 * 217.4} = 39690.7 \text{ m}$	m^2			
By thumb rule, the flange width is assume section. Try 720 X 60 mm, giving an area	$d as 0.3 times that a = 43200 mm^2.$	e depth of the		
<u>Web:</u>				
Minimum web thickness for plate girder in 10 mm to 20 mm. Here, thickness is assured	n buildings usua med as 14 mm.	lly varies between		
Hence, web size is 2400 X 14 mm				
4.0 SECTION CLASSIFICATION				
<u>Flange:</u>				
$\varepsilon = \left\{ \frac{250}{f_y} \right\}^{\frac{1}{2}} = \left\{ \frac{250}{250} \right\}^{\frac{1}{2}} = 1.0$				
$b = \frac{B-t}{2} = \frac{720 - 14}{2} = 353$				
$\frac{b}{T} = \frac{353}{60} = 5.9 < 7.9\varepsilon$				
Hence, Flange is PLASTIC SECTION.				

Structural Steel	Job No:	Sheet 5 of 18	Rev
	Job Title: PLATE GIRDER		
Design Project	Worked Examp	ple - 1 Mada hy	Data 15.04.00
		SSSR	Date 15-04-00
		Checked by	Date 25-04-00
Calculation Sheet		PU	
$\frac{Web:}{\frac{d}{t} = \frac{2400}{14} = 171.4 > 66.2\varepsilon$			
Hence, the web is checked for shear buck	ling.		
5.0 CHECKS			
<u>Check for serviceability:</u>			
$\frac{d}{250} = \frac{2400}{250} = 9.6 \text{ mm} < t$ Since, $t > \frac{d}{250}$ Web is adequate for serviceability.			
<u>Check for flange buckling in to web:</u>			
Assuming stiffener spacing, $a > 1.5 d$			
$t \ge \frac{d}{294} \left(\frac{p_{yf}}{250}\right)^{1/2} = \frac{2400}{294} \times \left(\frac{217.4}{250}\right)^{1/2} = \frac{2400}{294} \times \left(\frac{217.4}{250}\right)^{1/2} = \frac{1}{2} \left(\frac{1}{2}\right)^{1/2} = \frac{1}{2} \left(\frac{1}{2}$	= 7.6 <i>mm</i>		
Since, $t (= 14 \text{ mm}) > 7.6 \text{ mm}$, the web is a into the web.	adequate to avoi	d flange buckling	
Check for moment carrying capacity of t	the flanges:		
The moment is assumed to be resisted by j shear only.	flanges alone an	ed the web resists	
Distance between centroid of flanges, $h_s =$	= d + T = 2400	+60 = 2460 mm	
$A_f =$	B * T = 720 * 0	$50 = 43200 \ mm^2$	

	Job No:	Sheet 7 of 18	Rev
Structural Steel	Job Title: PL	ATE GIRDER	
Design Project	Worked Examp	ple - 1	-
2 001g-1 - 1 0 J 000		Made by	Date 15-04-00
		Chaolead by	Data $25.04.00$
Calculation Sheet		PU	Date 23-04-00
Calculation of critical shear strength, q	<u></u>		
Elastic critical stress, q_e (when $a/d > 1$) =	= [1.0 + 0.75/(a/	$(d)^2][1000/(d/t)]^2$	
=	= [1 + 0.75/(1.25	<i>]</i> ²][1000/(171.4)] ²	
=	= 50.4 N/mm ²		
Slenderness parameter, λ_w	$= [0.6(f_{yw}/\gamma_m)]$	$()/q_e]^{1/2}$	
	= [0.6(250/1	.15)/50.4] ^{1/2}	
	= 1.61 > 1.2	5	
Hence, Critical shear strength $(q_{cr} = q_e)$	$= 50.4 \text{ N/mm}^2$		
$f_v = \frac{F_{VA}}{dt} = \frac{2301^*10^3}{2400^*14} = 68.5 \ N / mm^2$			
Since, $f_v > q_{cr}$ (68.5 > 50.4)			
Panel AB is designed using tension field	l action.		
Calculation of basic shear strength, q_b :			
$\phi_t = \frac{1.5q_{cr}}{\sqrt{1 + \left(\frac{a}{d}\right)^2}} = \frac{1.5*50.4}{\sqrt{1 + (1.25)^2}} = 47.2$			
$y_b = (p_{yw}^2 - 3q_{cr}^2 + \phi_t^2)^{1/2} - \phi_t = (217.4^2 - \phi_t^2)^{1/2}$	$-3*50.4^2+47.2^2$	$(2)^{1/2} - 47.2 = 157.4$	
$\left \begin{array}{c} q_{b} = q_{cr} + \frac{y_{b}}{2\left[\frac{a}{d} + \sqrt{1 + \left(\frac{a}{d}\right)^{2}}\right]} = 50.4 + \frac{1}{2\left[\frac{a}{d} + \sqrt{1 + \left(\frac{a}{d}\right)^{2}}\right]} \right = 50.4 + \frac{1}{2\left[\frac{a}{d} + \sqrt{1 + \left(\frac{a}{d}\right)^{2}}\right]} = 50.4 $	$\frac{157.4}{1.25 + \sqrt{1 + (1.25)^2}}$	$\overline{(j)^2} = 78.0 \ N \ / \ mm^2$	

Version II

Structural Steel	Job No:	Sheet 8 of 18	Rev
	Job Title: PL	ATE GIRDER	
Design Project	Worked Examp	ole - I Mada by	Date 15 04 00
		SSSR	Date 13-04-00
		Checked by	Date 25-04-00
Calculation Sheet		PU	
Since, $q_b > f_v$ (78.)	0 > 68.5)		
Panel AB is safe against shear buckling.			
<u>Checks for the web panel:</u>			
End panel AB should also be checked flanges of the girder) capable of resisting due to anchor forces. (In the following calculations boundary s	as a beam (Spa g a shear force R tiffeners are omi	anning between the $t_{\rm ff}$ and a moment $M_{\rm ff}$ tted for simplicity)	
Check for shear capacity of the end panel	el:		
$H_{q} = 0.75 dt \ p_{y} \left[1 - \frac{q_{cr}}{0.6 \ p_{y}} \right]^{\frac{1}{2}} \left[\frac{f_{v} - q_{cr}}{q_{b} - q_{cr}} \right]$			
$q_{cr} = 50.4 N / mm^2$	¬ 1∕ ┍	-	
$H_q = 0.75 * 2400 * 14 * 217.4 \left[1 - 50.00000000000000000000000000000000000$	$\left \frac{4}{2}\right ^{2} \left \frac{68.5}{78}\right ^{2}$	$\left[\frac{-50.4}{-50.4} \right] = 2814 \ kN.$	
$R_{tf} = \frac{H_q}{2} = \frac{2814}{2} = 1407 kN$			
$A_v = t . a = 14 * 3000 = 42000 \ mm^2$			
$P_{\nu} = 0.6 p_{yw} A_{\nu} = 0.6 * (250/1.15) * 4200$	00/1000 = 5478 k	zΝ	
Since, $R_{tf} < P_{v}$, the end panel can carry the	ne shear force.		

Structural Staal	Job No:	Sheet 9 of 18	Rev
Stiuciui ai Steel	Job Title: PL		
Design Project	Worked Examp		
		Made by	Date 15-04-00
		SSSR	
Calculation Sheet		Checked by	Date 25-04-00
		PU	
Check for moment capacity of end panel	<u>AB:</u>		
$M_{tf} = \frac{H_q d}{10} = \frac{2814 * 2400}{10} * 10^{-3} = 675.$	4 kN - m		
$y = \frac{a}{2} = \frac{3000}{2} = 1500$			
$I = \frac{1}{12}ta^3 = \frac{1}{12}*14*3000^3 = 3150*10^7$	mm^4		
$M_q = \frac{I}{y} p_y = \frac{3150^{*}10^7}{1500} * (250/1.15) * 10^{0}$	$0^{-6} = 4565 \ kN - 10^{-6}$	m	
Since, $M_{tf} < M_q$ (675.4 < 4.			
.: The end panel can carry the bending n	ioment.		
7.0 DESIGN OF STIFFENERS			
Load bearing stiffener at A:			
Design should be made for compression f	force due to bear	ing and moment.	
Design force due to bearing, $F_b = 2301$ k	Ν		
Force(F_m) due to moment M_{tf} , is			
$F_m = \frac{M_{tf}}{a} = \frac{675.4}{3000} * 10^3 = 225 \ kN$			
$Total \ compression = F_c = F_b + F_m = 230$	1 + 225 = 2526	kN	

Structural Steel	Job No:	Sheet 10 of 18	Rev	
	Job Title: PL	Job Title: <i>PLATE GIRDER</i>		
Design Project	Worked Examp	ole - I Made by	Date 15-04-00	
		SSSI	Pale 15-04-00	
		Checked by	Date 25-04-00	
Calculation Sheet		PU	J	
Area of stiffener in contact with the flan	<u>ge, A:</u>			
Area (A) should be greater than $\frac{0.8 F_{o}}{p_{ys}}$	<u>·</u>			
$\frac{0.8F_c}{p_{ys}} = \frac{0.8*2526}{217.4} * 10^3 = 9295 \ mm^2$				
Try stiffener of 2 flats of size 240 X 25 mm	n thick			
Allow 15 mm to cope for web/flange weld	,			
$A = 225 * 25 * 2 = 11250 \text{ mm}^2 > 9295 \text{ m}$	m^2			
:: Bearing check is ok.				
Check for outstand:				
Outstand from face of web should not be	greater than 20	<i>tsE</i> .		
$\varepsilon = \left\{\frac{250}{f_y}\right\}^{\frac{1}{2}} = \left\{\frac{250}{250}\right\}^{\frac{1}{2}} = 1.0$				
Outstand $b_s = 240 \text{ mm} < 20 t_s \varepsilon (= 20 * 2)$	25 * 1.0 = 500)			
$b_s = 240 \ mm < 13.7 \ t_s \varepsilon \ (= 13.7 \ * 25 \ * 1.5)$	0 = 342.5)			
Hence, outstand criteria is satisfied.				

Structural Steel	Job No:	Sheet 12 of 18	Rev		
Design Drainet	Job Title: PL Worked Examp	Job Title: PLATE GIRDER			
Design Project	νοικεά Ελάπρ	Made by	Date 15-04-00		
		SSSR			
Calculation Sheet		Checked by	Date 25-04-00		
		PU			
For $f_y = 250 \text{ N/mm}^2$ and $\lambda = 11.6$					
$\sigma_c = 250 \text{ N/mm}^2 from table (3) of chapter$	er on axially con	pressed columns			
Buckling resistance of stiffener is					
$P_c = \sigma_c A_e / \gamma_m = (250/1.15) * 12000 * 10$	$k^{-3} = 2609 \ kN$				
Since $F_c < P_c$ (2526 < 2609), stiffener pr	rovided is safe ag	gainst buckling.			
Check stiffener A as a bearing stiffener:					
Local capacity of the web:					
Assume, stiff bearing length $b_1 = 0$					
$n_2 = 2.5 * 60 * 2 = 300$ BS :					
$P_{crip} = (b_1 + n_2) t p_{yw}$					
= (0 + 300) * 14 * (250/1.15) * 10					
Bearing stiffener is designed for F_A					
$F_A = F_c - P_{crip} = 2526 - 913 = 1613 \text{ kN}$					
Bearing capacity of stiffener alone					
$P_A = p_{ys} * A = (250/1.15) * 12000/1000$	= 2609 kN				
<i>Since,</i> $F_A < P_A$ (1613 < 26)	09)				
The designed stiffener is OK in bearing.					
Stiffener A – Adopt 2 flats 240 mm X 25 m	mm thick				

Structural Steel	Job No:	Sheet 13 of 18	Rev
	Job Title: PL		
Design Project	workea Examp	Made by	Date 15-04-00
		SSSR	Date 15 04 00
		Checked by	Date 25-04-00
Calculation Sheet		PU	
Design of intermediate stiffener at B:			
Stiffener at B is the most critical intermed chosen for the design.	liate stiffener, he	ence it will be	
<u>Minimum Stiffness:</u>			
$I_s \ge 0.75 dt^3$ for $a \ge d\sqrt{2}$			
$I_s \ge \frac{0.75 dt^3}{a^3}$ for $a < d\sqrt{2}$			
$d\sqrt{2} = \sqrt{2} * 2400 = 3394 \ mm$			
$\therefore a < d\sqrt{2} \qquad (3000 < 3394)$			
Conservatively' t' is taken as actual web t	hickness and mi	nimum' a' is used.	
$\frac{1.5d^3t^3}{a^2} = \frac{1.5*2400^3*14^3}{3000^2} = 632*10^4 t^3$	mm^4		
Try intermediate stiffener of 2 flats 90 mm	n X 12 mm		
$(I_s)_{\text{Provided}} = \frac{12*194^3}{12} - \frac{12*14^3}{12} = 730*$	$10^4 \ mm^4$		
The section provided satisfies the minin	um required sti	ffness.	

Structural Steel	Job No:	Sheet 14 of 18	Rev	
Structural Steel	Job Title: PL	Job Title: PLATE GIRDER		
Design Project	Worked Examp	ole - 1 Mada hy	Data 15.04.00	
		Made by	Date 15-04-00	
		Checked by	Date 25-04-00	
Calculation Sheet		PU		
<u>Check for outstand:</u>				
Outstand of the stiffener $\leq 13.7 t_s \varepsilon$				
$13.7 t_s \varepsilon = 13.7 * 14 * 1.0 = 192 mm$				
$Outstand = 90 mm \tag{90}$	< 192)			
Hence, outstand criteria is satisfied.				
Buckling check:				
Stiffener force, $F_q = V - V_s$				
where, $V = Total shear force$ $V_s = V_{cr} of the web.$				
Elastic critical stress, $q_e =$	50.4 N/mm ²			
$V_{cr} = q_{cr} d t = 50.4 * 2400 * 14 * 10^{-3} =$	1693 kN			
Shear force at B, $V_B = 2301 - [(2301 - 15)]$	585.5)*(3000/90	00)] = 2062.5 kN		
Stiffener force, $F_q = [2062.5 - 1693] = 3$	869.5 kN			

Structural Steel	Job No:	Sheet 16 of 18	Rev		
	Job Title: PL	Job Title: PLATE GIRDER			
Design Project	workea Examp	ne - 1 Made by	Date 15-04-00		
		SSSR			
Calculation Shoot		Checked by	Date 25-04-00		
		PU			
Buckling resistance = $(182.3/1.15) * 100$	000 * 10 ⁻³ = 1585	5 kN			
F_q < Buckling resistance. (369.5 < 1585)					
Hence, intermediate stiffener is adequate					
Intermediate stiffener at B - Adopt 2 flat.	s 90 mm X 12 mi	m			
Intermediate Stiffener at D (Stiffener su	ubjected to exter	nal load):			
Try intermediate stiffener 2 flats 90 mm X	X 12 mm thick				
It satisfies the minimum stiffness require	ement as in case	of stiffener at B.			
Buckling check:					
$\frac{F_q - F_x}{P_q} + \frac{F_x}{P_x} + \frac{M_s}{M_{ys}} \le 1$					
$F_q = V - V_s \qquad \qquad V = 1585.5 \ kN$					
$V_s = V_{cr} = q_{cr} d t = 50.4 * 2400 * 14 * 10^{-10}$					
F_q is negative and so we can take $F_q - F_x$	= 0				
$M_s = 0$					
$F_x = 870 \ kN$					

Structural Steel	Job No:	Sheet 17 of 18	Rev
	Job Title: <i>PLATE GIRDER</i>		
Design Project	workea Examp	ne - 1 Made by	Date 15-04-00
		SSSR	Date 15 04 00
Calculation Shoot		Checked by	Date 25-04-00
Calculation Sheet		PU	
Buckling resistance of load carrying stiffener at D:			
(Calculation is similar to stiffener at B)			
Buckling resistance, $P_x = (182.3/1.15) * 10000 * 10^{-3} = 1585 \text{ kN}$			
$F_x / P_x = 870/1585 = 0.55 < 1.0$			
Hence, stiffener at D is OK against buckling			
Stiffener at D - Adopt flats 90 mm X 12 mm thick			
<u>Web check between stiffeners:</u>			
$f_{ed} \leq p_{ed}$			
$f_{ed} = w^{l}/t = 79.5/14 = 5.7 N/mm^{2}$			
when compression flange is restrained against rotation relative to the web			
$p_{ed} = \left[2.75 + \frac{2}{\left(\frac{a}{d}\right)^2}\right] \frac{E}{\left(\frac{d}{t}\right)^2} = \left[2.75 + \frac{2}{\left(\frac{3000}{2400}\right)^2}\right] \frac{200000}{\left(\frac{2400}{14}\right)^2}$			
$=\frac{3.79*20000}{26406}=27.4 \ N/mm^2$			
Since, $f_{ed} < p_{ed}$ [5.7 < 27.4], the web is OK for all panels.			

