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1.0 INTRODUCTION 

 

A fabricated plate girder shown diagrammatically in Fig. 1 is employed for supporting 

heavy loads over long spans. The bending moments and shear forces produced in such 

girders are well beyond the bending and shear resistance of rolled steel girders available. 

In such situations the designer has the choice of one of the following solutions: 

 

 Use two or more regularly available sections, side-by-side. This is an expensive 

solution and may still not satisfy deflection limitation. 

 Use a cover-plated beam; i.e. weld a plate of adequate thickness to beef up each 

flange. This would enhance the bending resistance, in circumstances where the web 

has adequate shear resistance and the rolled steel section is only marginally 

inadequate. 

 Use a fabricated plate girder, wherein the designer has the freedom (within limits) to 

choose the size of web and flanges, or 

 Use a steel truss or a steel-concrete-composite truss. 

 

This chapter is concerned with plate girders only. Plate girders are large I – shaped 

sections built up from plates, as shown in Fig. 2. 
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Fig. 2 Cross-section of fabricated plate girders 

Fig. 1  Typical plate girder with intermediate and end stiffeners 
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Nearly all plate girders built today are welded, although they may use bolted field splices. 

In the West, plate girders are invariably fabricated in fabrication shops, using numerically 

controlled welding machines [See Fig. 2(a)]. If the plate girders are to be fabricated in the 

field, the type sketched in Fig. 2(b) is used to minimise overhead welding. 

 

The primary function of the flange plates is to resist bending moments by developing 

axial compressive and tensile stresses. The web plate resists the shear. For a given 

applied bending moment, the axial force decreases, as the depth of the girder (d) 

increases. From this point of view it is economical to keep the flanges as far apart as 

possible. This would ensure that the flanges would have to resist smaller axial forces. 

Thus a smaller area of cross section would suffice than would be the case if a smaller 

depth were chosen. However, this would also mean that the web would be deep. To 

reduce the self-weight (and the corresponding self-weight bending moment), the web 

thickness (t) would have to be limited to slender proportions, (the web proportions are 

normally expressed in terms of the web slenderness ratio, d/t). Slender webs (with large 

d/t values) would buckle at relatively low values of applied shear loading. (It is also 

important to note that webs having a span/depth ratio smaller than 12 would result in a 

“deep” beam, wherein the structural behaviour can no longer be described by 

conventional simple beam theories). 

 

Efficient and economical design usually results in slender members. Hence advantage 

must be taken of the post buckling capacity of the web i.e. the ability of the girder to 

withstand transverse loads considerably in excess of the load at which the web buckles 

under shear. A girder of high strength to weight ratio can be designed by incorporating 

the post buckling strength of the web in the design method employed. This would be 

particularly advantageous where the reduction of self-weight is of prime importance. 

Examples of such situations arise in long span bridges, ship girders, transfer girders in 

building etc.  

 

2.0 SHEAR RESISTANCE OF TRANSVERSELY STIFFENED PLATE 

GIRDERS 

 

Webs of plate girders are usually stiffened transversely as shown in Figure 1. This helps 

to increase the ultimate shear resistance of the webs, as will be seen later. The stiffener 

spacing (a) influences both buckling and post buckled behaviour of the web under shear. 

In order to allow for this, the parameter (a/d) which accounts for the geometry of the web 

panel is important. Obviously, a long span girder will have various web panels and each 

panel will have different combinations of bending moments and shear forces. In a long 

plate girder, panels close to the support will be subjected to predominant shear and those 

close to the centre, to predominant bending moments.  

 

In what follows, the effect of shear will be considered first, followed by the effect of co-

existing bending moment and shear forces. 
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2.1 Shear resistance of a web 

 

2.1.1 Pre-buckling behaviour (Stage 1) 

 

When a web plate is subjected to shear, we can visualise the structural behaviour by 

considering the effect of complementary shear stresses generating diagonal tension and 

diagonal compression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider an element E in equilibrium inside a square web plate subject to a shear stress q.  

The requirements of equilibrium result in the generation of complementary shear stresses 

as shown in Fig. 3. This results in the element being subjected to principal compression 

along the direction AC and tension along the direction of BD. As the applied loading is 

incrementally enhanced, with corresponding increases in q, very soon, the plate will 

buckle along the direction of compressive diagonal AC. The plate will lose its capacity to 

any further increase in compressive stress; the corresponding shear stress in the plate is 

the “critical shear stress” qcr. The value of qcr can be determined from classical stability 

theory if the boundary conditions of the plate are known. As the true boundary conditions 

of the plate girder web are difficult to establish due to restraint offered by the flanges and 

stiffeners we may conservatively assume them to be simply supported. The critical shear 

stress in such a case is given by 
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Fig. 3 Unbuckled shear panel 
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where, ks is the shear buckling coefficient given by 

 

 
Values of qcr for various values of web aspect ratios are tabulated in Table 1. 

 

                 Table 1: qcr (MPa) Values 

 

           a/d 

d/t 

1.0 1.5 2.0 0.5 

100 169 129 115 Buckling does 

not govern 

125 108 83 73 Buckling does 

not govern 

150 75 57 51 204 

175 55 42 37 150 

200 42 32 29 115 

225 33 25 23 91 

250 27 21 18 72 

 

   

E = 200,000 MPa   = 0.3   = 3.1412 

 

When the value of (d/t) is sufficiently low (d/t  85) qcr increases above the value of yield 

shear stress and the web will yield under shear before buckling. 

 

2.1.2 Post buckled behaviour (Stage 2) 

 

The compression diagonal (AC) is unable to resist any more loading beyond the one 

corresponding to the elastic critical stress. Once the web has lost its capacity to sustain 

increase in compressive stresses, a new load–carrying mechanism is developed. 

Applications of any further increases in the shear load are supported by a tensile 

membrane field, anchored to the boundaries, viz. the top and bottom flanges and the 

adjacent stiffener members on either side of the web. The angle of inclination of the 

membrane stress () is unknown at this stage (See Fig. 4). Thus the total state of stress in 

this web plate may be obtained by superimposing the post-buckled membrane tensile 

stresses (pt) upon those set up when the applied shear stress reached the critical value qcr. 

 

The state of stress in the web in the post-buckled stage is shown in Fig. 5. 
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Resolving these stresses in the direction along and perpendicular to the inclination  we 

get, 

 

Since the flanges are of finite rigidity, the pull exerted by the tensile membrane stresses 

in the web will cause the flanges to bend inwards. 

 

2.1.3 Collapse behaviour (Stage 3) 

 

When the load is further increased, the tensile membrane stress (pt) developed in the web 

continues to exert an increasing pull on the flanges. Eventually the resultant stress (p) 

(obtained by combining the buckling stress in Equation (1) and the membrane stress pt) 

reaches the yield value for the web. 

 

This value (of the membrane stress at yield) may be denoted by pyw, and may be 

determined by Von-Mises yield criterion. 

 

where, pyw = tensile yield stress of the web 

 

By substituting the values of p,  p(+90) and q from Equation (2), the above equation 

may be presented in a non-dimensional form as follows: 
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Fig. 5  State of stress in the web in 

 the post buckled stage 

Fig. 4  Post buckled behaviour 
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where, qcr is obtained from Equation (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the web has yielded, final collapse of the girder will occur when four plastic hinges 

are formed in the flanges as shown in Fig. 6. The plastic moment capacity of the flange 

plate is Mpf. 

 

By using the virtual work method, Rockey and his team at Cardiff have shown that the 

failure load can be computed from 

 

where c = distance between the hinges given by 

 

 

This equation can be non-dimensionalised by using the shear load required to produce 

yielding in the entire web (Vyw = qyw. d.t.) 
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        Fig. 6  Collapse of the panel 

Tensile membrane 

stress at yield = pyt 
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Equation (6) or (8) can be solved if  is known. As these equations are based on Energy 

Method, the correct solution will be obtained by maximising Vs with respect to . By a 

systematic set of parametric studies, Evans has established that  is approximately equal 

to 2/3 of the inclination of diagonal of the web. 

 

Notice that Equations (6) and (8) are obtained by adding 3 quantities: web-buckling 

strength, post-buckling membrane strength of the web plate and the plastic moment 

capacity of the flange. 

 

In this context, it must be noted that in order for the flanges to develop hinges, the flanges 

must be classifiable as "plastic" sections. If flanges can not develop plastic hinges 

because they are compact, semi-compact or slender, this method of analysis is NOT 

applicable. 

 

2.1.4 “Weak” flanges  

 

When a plate girder has weak flanges, Mpf is a small quantity in comparison with the 

other terms. Hence 

 

 

In this case the tension field is NOT supported by flanges. 

The field anchors entirely on transverse stiffeners as shown in Fig. 7. 
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Fig. 7 Weak flange 
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2.1.5 Very “Strong” flanges 

 

When “Very Strong” flanges are employed, the distance (c) of the plastic hinge away 

from the end panel increases. When c = a, the hinges will form at the four corners, 

constituting a “picture frame” type mechanism (See Fig. 8) and the tension field angle 

() is 45°. Ultimate shear in this case is given by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.6 Very “Thick” webs 

 

In case the web is thick, it will yield before buckling failure will form by a picture frame 

mechanism, with qcr = qyw. 

 

2.1.7 Very “Slender” webs 

 

Very slender webs are rarely used as they cause anxieties for the users due to high levels 

of buckling. 

 

In very slender webs qcr/qyw is extremely small and there will be significant post-buckled 

tension field, the value of membrane stress pyt will be very large. The general expression 

given in Equation (8) is valid and  can be evaluated using equation (9). 
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Fig. 8 Picture frame mechanism of strong flange 
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3.0 WEBS SUBJECTED TO CO-EXISTENT BENDING AND SHEAR 

 

When a girder is subjected to predominant bending moments and low shear, its ultimate 

capacity is conditioned by the interaction between the effects of the bending moment and 

shear force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Interaction between bending and shear effects 

Fig. 9(b) 

Fig . 9(a) 
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The interaction diagram is generally expressed in the form seen in Fig. 9, where the shear 

capacity is plotted in the Y-axis and the bending capacity in the X-axis. Any point in the 

interaction diagram shows the co-existent values of shear and bending moment that the 

girder can sustain. The vertical ordinates are non-dimensionalised using Vyw (Yield shear 

of the web) and the horizontal ordinates by Mp (the fully plastic moment resistance of the 

cross section). The portion of the curve between points A and C is the region in which the 

girder will fail by predominant shear, i.e. shear mechanism of the type represented in Fig. 

6 will develop at collapse.  

 

The vertical ordinate at A presents the shear capacity (Vs) given by Equation 8. This shear 

capacity will reduce gradually due to the presence of co-existent bending moment. 

Beyond point C, when the applied moment is high, the failure will be triggered by the 

collapse of flanges by one of the following: (i) by yielding of flange material or (ii) by 

inward buckling of the compression flange or (iii) by lateral buckling of the flange. Thus 

there is a distinct change in failure criterion represented by line OC in Fig. 9(a); the left 

of OC represents shear failure and the right of OC, flexural failure. Generally the flange 

failure mode will be triggered, when the applied bending moment is approximately equal 

to the plastic moment resistance MF, provided by the flange plates only, neglecting the 

contribution from the web. 

 

 

 

where, bf - Breadth of flange 

 T - Thickness of flange 

 pyf- Design stress of flange 

 d - depth of web plate 

 

This value represents the horizontal co-ordinate of the point C, i.e. the point F. In zone 

ABC, the presence of additional bending moment requires the following three factors to 

be considered. 

 

 The reduction in the web buckling stress due to the presence of bending stresses. 

 The influence of bending stresses on the value of membrane stress required causing 

yield in the web. 

   The reduction of plastic moment capacity of flanges due to the presence of axial 

flange stresses caused by bending moment. 

 

3.1 Modified web buckling stress 

 

The modified web buckling stress due to coincident bending stress may be computed 

from the following interaction Equation:  

 

where, qcrm  = modified shear buckling stress in web 
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qcr    = elastic critical shear stress in web (pure shear case as defined  

            previously) 

 fmb    = compressive bending stress in the extreme fibre at the mid panel due to 

              the bending moment. 

 fcrb   = buckling stress for the plate due to a pure bending moment given by 

 

 

3.2 Modified membrane stress for web yielding 

 

The bending membrane stress (pyt) to be added to the critical shear stress (qcr) was 

calculated in the pure shear case, using Equations (4) and (1) respectively. The modified 

expression for the membrane stress pytm, in the presence of applied bending moment is 

given by 

 

 

 

where,  A = 3 qcrm sin 2 + pb sin2 - 2pb cos2  

 

  pb =  The value of bending stress, which varies over both the depth and 

           width of the web panel. 

 

As pytm varies for various values of pb, it may be necessary to compute pytm at a number of 

locations in order to compute the resultant of the membrane stresses. This could be time-

consuming. To simplify the design calculations an adequately accurate approximate 

procedure is suggested a little later. 

 

3.3 Reduction of plastic moment capacity of flanges 

 

When high axial forces are developed in the flanges due to bending moments, their 

effects in reducing plastic moment capacity of flange plates must be taken into account. 

From plasticity theory, the reduced capacity (M'pf ) is given by 

 

where, pf is the average axial stress for the portion of the flange between hinges. 

 

3.4 Design procedure 

 

The simplified design procedure suggested by Rockey et. al (1978) is validated by them 

by experiments and parametric studies. This procedure is summarised below: 
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The shear load capacity at point C of the interaction diagram may be obtained 

approximately from an empirical relationship given below. 

 

 

This equation gives the vertical ordinate of the point C in the interaction diagram [Fig. 

9(a)]. The horizontal ordinate as stated previously is given by the value of MF (See 

Equation 13). 

 

The interaction diagram is constructed in stages as follows [See Fig. 9(b)]: 

 

(i) Between A and B, the curve is horizontal. The horizontal ordinate B is given by 

maximum bending moment in the end panel given by Vs.b, but limited to a value 

of 0.5MP. 

(ii) Between B and C, the curve may be straight (for simplicity). The moment 

corresponding to C is given by 

    MF  =  bf . T . pyf  (d + T) 

(iii) The point D represents nearly the ultimate capacity of the flanges (Mu) and the 

shear values when high bending is present. This is discussed in the next section. 

 

3.5 Webs subjected to pure bending 

 

The region beyond C of the interaction diagram represents a high bending moment, so the 

failure is by bending moment, rather than by shear mode. In a thin walled girder, the web 

subjected to compressive bending stress will buckle, thereby losing its capacity to carry 

further compressive stresses. The compression flange will therefore carry practically all 

the compressive stresses, as the web is unable to be fully effective. Consequently the 

girder is unable to develop full plastic moment of resistance (Mp) of the cross section. 

 

If no lateral buckling occurs (e.g. by provision of adequate lateral supports), the girder 

will fail by inward collapse of compression flange at an applied moment (Mu) which is 

approximately equal to the moment required to produce first yield in the extreme fibres of 

compression flange. This moment is – of course – reduced because of the effects of web 

buckling. Though the concept is simple, the resulting calculations are complex. The 

research of Cooper in 1971 enables the ultimate moment capacity to be determined by a 

simple formula: 

 

My = Bending moment required to produce yield in the extreme fibre of flange assuming 

fully effective web (i.e. neglecting web buckling) 
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This value of Mu is the moment required to produce yield in the extreme fibres of the 

flange. The corresponding stresses in the web will be below yield. (Point D in the 

interaction diagrams). The ordinate of D can be calculated approximately from 

 

where, Mp is the fully plastic moment capacity of the complete cross section 

 Mpw = plastic moment resistance of the web plate alone. 

         = 0.25 td2. pyw 

The complete interaction diagram can now be drawn. 

 

4.0 ULTIMATE BEHAVIOUR OF TRANSVERSE WEB STIFFENERS 

 

The shear failure mechanism described so far has been extensively verified by 

experiments. Before post-buckling action in webs can develop the members in the 

boundary (viz. the flanges and the stiffeners) must be able to support the forces imposed 

on them by the web tension field. 

 

The transverse stiffeners play an important role in allowing the full ultimate capacity of 

the girder to be achieved (a) by increasing the web buckling stress (b) by supporting the 

tension field after web buckling and (c) by preventing the tendency of flanges to get 

pulled towards each other. The stiffeners must therefore possess sufficient rigidity to 

ensure that they remain straight, while restricting buckling to the individual web panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Analysis of loads imposed on the transverse stiffener 

 

Fig. 10 represents the loads acting on typical stiffener CD positioned between two 

adjacent panels, each of which have developed shear failure mechanism. This is perhaps 

the most critical form of loading of an intermediate stiffener. 

 

Let us consider the loads on the intermediate stiffener 
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Fig. 10 Force imposed on transverse stiffeners by tension field 
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The resultant of the loads acting on portion W1C of top flanges is Ffw, inclined at an angle 

of 1 and DY2 of bottom flange is Ff.2, inclined at an angle of 2. The vertical component 

of these forces will tend to pull the flanges together and the stiffener will resist this by 

developing end loads (VC and VD). 

 

 

Moreover, the loading imposed directly upon the stiffener by web tension field can be 

split into 3 zones: the top part CG is subject to a pull to the left by the left hand panel, the 

bottom part HD is similarly subject to a pull to the right by the right hand panel. The part 

GH is pulled to the left and to the right (these two forces more or less balancing each 

other). Thus the central region remains virtually unloaded by the tension field action. 

 

The vertical component of forces on zones CG and DH are respectively obtained as 

 

Thus once the ultimate shear loading and the geometry of failure mechanism has been 

determined, calculations of forces on the stiffeners by employing Equations (21) and (22) 

may be made. 

 

Unfortunately, the actual behaviour of stiffeners (as evidenced by experimental studies by 

Rockey in 1981 and Puthali in 1979) is somewhat different from the simple model 

described above. 

Firstly, a portion of the web plate acts with the stiffeners in resisting the axial load, 

despite the fact the web has theoretically yielded due to tension field. The effective cross 

section is in the form of a T section or a cruciform section, if the stiffeners are on both 

sides of the web plate. 

 

Secondly the theory explained previously assumed that the axial loading is applied to the 

stiffener cross section at its mid thickness. The true position of load application is 

unknown and some degree of eccentricity of application of loads is inevitable. 

 

Thus the stiffener is subjected to both axial load (P) and bending moment arising due to 

the eccentricity of the applied load from the centroidal axis (     and is given by       .  

There will–inevitably be–some imperfections (o) in the stiffener giving rise to 

consequent moments of Po. The disturbing action on the stiffener due to the web 

buckling is difficult to quantify but nevertheless is present. 

 

Horne (1979) has proposed a suitable expression to define the combination of axial load 

and bending moment (making allowance for the above complexities) which can be 

sustained by a stiffener: 
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where, Mps = Full plastic moment capacity of the section where there is no axial loading 

 Ps   = Squash load (i.e. full axial yield load) 

 bs   =   Width of stiffener 

 ts      =   Thickness of stiffener 

 pys   =    Design stress of stiffener  

 t        =   Thickness of web 

 

For any girder, the axial load to which the stiffener is subjected can be computed from 

Equations (21) and (22). Then, provided the co-existent moment is less than the allowable 

moment defined by Equation (23), the stiffener will be able to support the loads to which 

it is subjected. 

 

The theory governing the design of stiffeners is given above; but the design codes make 

simplifications to ease the task of the designers and enable quick sizing of the stiffeners. 

 

5.0 GENERAL BEHAVIOUR OF LONGITUDINALLY STIFFENED GIRDERS 

 

In order to obtain greater economy and efficiency in the design of plate girders, slender 

webs are often reinforced both longitudinally and transversely. The longitudinal stiffeners 

are generally located in the compression zones of the girder. The main function of the 

longitudinal stiffeners is to increase the buckling resistance of web. The longitudinal 

stiffener remains straight thereby subdividing the web and limiting the web buckling to 

smaller web panels. In the past it was usually thought that the resulting increase in 

ultimate strengths could be significant. Recent studies have shown that this is not always 

the case, as the additional cost of welding the longitudinal stiffeners invariably offsets 

any economy resulting in their use. 

 

The main effect of longitudinal stiffeners is to increase the elastic critical buckling 

strength. Studies by Rockey et al have shown that a longitudinally reinforced plate girder 

subject predominantly to shear would develop a collapse mechanism, similar to the one 

described previously, provided the stiffeners remained rigid up to failure. Once a tension 

field develops it extends over the complete depth of the girder. In other words, once one 

of the sub panels has buckled, the post buckling tension field develops over the whole 

depth of the web panel and the influence of the stiffeners may be neglected. Thus the 

equations established previously are valid, keeping in mind qcr values are enhanced due 

to the smaller panel dimensions. 

 

In the design of longitudinal stiffeners, linear buckling theories are often used to establish 

the minimum value of stiffener rigidity required to ensure that the longitudinal stiffeners 

remain straight at first buckling. This would ensure that the buckling is limited to 

individual sub-panels of the web. This invariably involves the provision of stiffeners of 

substantial sizes, just so that they would remain straight without themselves buckling. 

 
)23(

5.0
0.1

2

sps

ssys

ps P

P

M

txbtp

M

M 




PLATE GIRDERS  - I 

Version II 
 

15 - 16 

Normally the rigidity of such stiffeners has to be increased by 4-6 times, to satisfy this 

requirement. The heavy stiffeners thus designed, though adequate, will naturally increase 

the weight of steel used and therefore the cost. It seems that it is more sensible to increase 

the web thickness in these cases. 

 

In general, the extra cost of providing longitudinal stiffeners is rarely justified. In western 

countries numerically controlled machines are used extensively for fabricating plate 

girders. In these countries the provision of longitudinal (and transverse) stiffeners 

involves manual welding and contributes to the rise in the cost of fabrication. Indeed, in 

Scandinavian countries, the current trend is to eliminate or minimise the use of transverse 

stiffeners as far as possible. The use of longitudinal stiffeners has also been discontinued 

for this reason in these countries. In other words, if they can help it, they do not use any 

stiffeners at all! 

 

Longitudinal stiffeners are rarely – if ever – used in buildings. They are sometimes used 

in bridges, particularly when the Elastic Design is employed. Fig. 11 shows a typical 

plate girder with longitudinal and transverse stiffeners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0   CONCLUSIONS 

 

This chapter has considered the ultimate behaviour of plate girders in some detail. 

Fundamental theoretical relationship based on buckling and post-buckling theories have 

been established. In some case, semi-empirical procedures have been suggested to ease 

the tedium of lengthy calculations. Transverse stiffeners have been considered in some 

depth. The use of longitudinal stiffeners has also been described and the reasons for not 

using these extensively have been discussed. 

Fig. 11 Longitudinal and Transverse stiffeners 
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