Structural S	Job No:		Rev		
Structurals	Job Title	e: <i>BE</i>			
Design Proi	Worked	Examp			
8 8 9			Made by	Date 3-1-00	
				SSSR	D 10100
Calculation Sheet			Checked by	Date 10-1-00	
				VA	
PROBLEM: 1					
A non – sway intermediate co 4.0 m high and it is ISHB 300 of the section when the colum					
Factored axial load = 500 kM					
Factored moments:					
	M_x			M_y	
Dottom 70	1-N		17) tN	
$\begin{array}{rcl} Bottom & +7.0 \\ Top & +15.0 \end{array}$	kN - m		-1.0 + 0.2	7 KN - M 75 kN - m	
10p + 15.0					
[$f_y = 250 \ N/mm^2$; E	$= 2*10^5 N_{0}$	/mm ²]			
Assume effective length of the					
CROSS-SECTION PROPER					
Flange thickness	= <i>T</i>	=	10.6	mm	
Clear depth between flanges	= <i>d</i>	= =	300 – 278.8	(10.6 * 2) mm	
Thickness of web	= t	=	7.6 m	m	
Flange width	= 2 <i>b</i>	=	250 n	ım	
	b	=	125 n	ım	
Area of cross-section	$=$ A_g	=	7485	mm ²	

Structural Steel	Job No:	Sheet 2 of 6	Rev				
Structural Steel	Job Title: BEAM COLUMN						
Design Project	Worked Example - 1						
		Made by	Date 3-1-00				
		SSSR	.				
Calculation Sheet		Checked by	Date 10-1-00				
		VK					
$r_x = 129.5 mm$							
$r_y = 54.1 mm$							
$I_x = 12545.2*10$	$I_x = 12545.2*10^4 mm^4$						
$I_y = 2193.6*10^4$	$I_y = 2193.6*10^4 mm^4$						
$Z_x = 836.3*10^3 r$	$Z_x = 836.3 * 10^3 mm^3$						
$Z_y = 175.5*10^3 r$	$Z_y = 175.5 * 10^3 mm^3$						
$Z_{px} = 953.4*10^3 r$	= 953.4*10 ³ mm ³						
$Z_{py} = 200.1*10^3 n$	nm ³						
(i) Type of section:							
$\frac{b}{T} = \frac{125}{10.6} = 11$ $\frac{d}{T} = \frac{278.8}{7.6} = 3$.8 <13.65 ∈ 6.7 <40.95 ∈	=					
ι 7.0							
where, $\in = \sqrt{\frac{2}{f}}$	$\frac{\overline{50}}{r_y} = \sqrt{\frac{250}{250}} =$	= 1.0					
Hence, cross- section is "SEMI-C	COMPACT" (Cla	uss 3)					

Structural Steel				Job No:		Sheet <i>3 of 6</i>	Rev		
						Job Title: BEAM COLUMN			
Design Project						Worked Exa	amp	le - I	D + 21.00
		U	Ŭ					Made by	Date 3-1-00
								Checked by	Date 10-1-00
	Calc	ulatio	n Shee	t				VK	
(ii)	<i>i)</i> Check for resistance of cross-section to the combined effects for yielding:								
	f_{yd}	=	f_y/γ_a	=	250)/1.15			
				=	217	7.4 N/mm ²			
			A_g	=	748	$85 mm^2$			
			Z_x	=	836	$.3*10^3 mm^3$			
			Z_y	=	175.	$.5*10^3 mm^3$			
			F_c	=	500	kN			
			M_x	=	15 k	kN-m			
			M_y	=	1.0	kN-m			
	The i	nteraction $\frac{F_c}{\Lambda - f}$	on equa $\frac{1}{1} + \frac{N}{7}$	tion is: $\frac{M_x}{f}$ +	M	$\frac{y}{f} \le 1$			
		ngjy	d = x	:J yd	z yJ	yd			
		$= \frac{5}{74}$ $= 0$	500×10 ⁻ 185×217 0.307 + 0	$\frac{3}{7.4} + \frac{3}{836}$	15 6.3× 0.020	5×10^{6} $10^{3} \times 217.4$ $6 = 0.416 < 10^{-10}$	+ - <u>1</u> 1.0	$\frac{1 \times 10^{6}}{75.5 \times 10^{3} \times 217.4}$	
	Henc	e, sectic	on is O.H	K. agains	t coi	nbined effect	S		

Structural Steel		Job No:	Sheet <i>4 of 6</i>	Rev
		Job Title: BE		
	Design Project	Worked Examp	le - 1	
			Made by	Date 3-1-00
	Calculation Sheet		Checked by VK	Date 10-1-00
(iii)	Check for resistance of cross-sec buckling:	tion to the comb	ined effects for	
	Slenderness ratios:			
	Effective length of the coli			
	$\lambda_x = 3400/129.5 = 20$	6.3		
	$\lambda_y = 3400/54.1 = 6.$	2.8		
	$\lambda_1 = \pi (E/f_y)^{1/2} = n$	$\pi (200000/250)^{1/2}$		
	= 8	8.9		
	Non-dimensional slenderness rati	os:		
	$\overline{\lambda} = \frac{\lambda}{\lambda_I}$			
	$\overline{\lambda}_{x} = \frac{26.3}{88.9} = 0.296$			
	$\overline{\lambda}_y = \frac{62.8}{88.9} = 0.706$			
	Calculation of χ :			
	Imperfection factors:			
	$\alpha_x = 0.21$; $\alpha_y =$	= 0.34		

