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1.0 INTRODUCTION 

 

The basic theory of beam buckling was explained in the previous chapter. Doubly 

symmetric I- section has been used throughout for the development of the theory and 

later discussion. It was established that practical beams fail by:  

 

(i) Yielding, if they are short  

(ii) Elastic buckling, if they are long, or  

(iii) Inelastic lateral buckling, if they are of intermediate length. 

 

A conservative method of designing beams was also explained and its limitations were 

outlined. 

 

In this chapter a few cases of lateral buckling strength evaluation of beams encountered 

in practice would be explained. Cantilever beams, continuous beams, beams with 

continuous and discrete lateral restraints are considered. Cases of monosymmetric beams 

and non-uniform beams are covered. The buckling strength evaluation of non-symmetric 

sections is also described.    

 

2.0    CANTILEVER BEAMS 

 

A cantilever beam is completely fixed at one end and free at the other. In the case of 

cantilevers, the support conditions in the transverse plane affect the moment pattern. For 

design purposes, it is convenient to use the concept of notional effective length, k, which 

would include both loading and support effects. The notional effective length is defined 

as the length of the notionally simply supported (in the lateral plane) beam of similar 

section, which would have an elastic critical moment under uniform moment equal to the 

elastic critical moment of the actual beam under the actual loading conditions. 

Recommended values of ‘k’ for a number of cases are given in Table 1. It can be seen 

from the values of ‘k’ that it is more effective to prevent twist at the cantilever edge rather 

than the lateral deflection.  

 

Generally, in framed structures, continuous beams are provided with overhang at their 

ends. These overhangs have the characteristics of cantilever beams. In such cases, the 

type of restraint provided at the outermost vertical support is most significant. Effective 

prevention of twist at this location is of particular importance. Failure to achieve this 

would result in large reduction of lateral stability as reflected in large values of ‘k’, in 

Table 1. 
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Table 1 Recommended values of ‘k’ 

 

Restraint conditions Loading condition 

At support 

 

At tip Normal Destabilizing 

Built in laterally and 

torsionally 

 

Free 
 

 

Lateral restraint only 

 

 

Torsional Restraint only 

 

Lateral and Torsional 

 Restraint  

0.8 
 

 

0.7 
 

 

0.6 
 

 

0.5 
 

1.4 
 

 

1.4 
 

 

0.6 
 

 

0.5 

Continuous with 

lateral and torsional 

restraint 

 

Free 
 

 

Laterally restraint only 

 

Torsional Restraint only 

 

 

Laterally and Torsional 

 Restraint  

1.0 
 

 

0.9 
 

 

0.8 
 

 

0.7 
 

2.5 
 

 

2.5 
 

 

1.5 
 

 

1.2 

Continuous, with 

lateral restraint only 

 

Free 
 

Lateral restraint only 

 

 

Torsional Restraint only 

 

Laterally and Torsional 

 Restraint  

3.0 
 

 

2.7 
 

 

2.4 
 

 

2.1 

7.5 
 

 

7.5 
 

 

4.5 
 

 

3.6 

For continuous cantilevers  not less than 1  where 1  is the length of the adjacent 

span 

 

 
 

  



  UNRESTRAINED BEAM DESIGN-II 

Version II 12-3 

3.0     CONTINUOUS BEAMS 

 

Beams, extending over a number of spans, are normally continuous in vertical, lateral or 

in both planes. In the cases, where such continuity is not provided lateral deflection and 

twisting may occur. Such a situation is typically experienced in roof purlins before 

sheeting is provided on top of them and in beams of temporary nature. For these cases, it 

is always safe to make no assumption about possible restraints and to design them for 

maximum effective length.  

 

Another case of interest with regard to lateral buckling is a beam that is continuous in the 

lateral plane i.e. the beam is divided into several segments in the lateral plane by means 

of fully effective braces. The buckled shape for such continuous beams include 

deformation of all the segments irrespective of their loading. Effective length of the 

segments will be equal to the spacing of the braces if the spacing and moment patterns 

are similar. Otherwise, the effective length of each segment will have to be determined 

separately. 

 

To illustrate the behaviour of continuous beams, a single-span beam provided with 

equally loaded cross beams is considered (see Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Two equally spaced, equally loaded cross beams divide the beam into three segments 

laterally. In this case, true Mcr of the beam and its buckling mode would depend upon the 

spacing of the cross beams. The critical moment McrB for any ratio of 1 / b would lie in 

between the critical moment values of the individual segments. The critical moments for 

the two segments are obtained using the basic equation given in the earlier chapter. 

 

 

 
 

 

(In the outer segment, m = 0.57. Using 1 / m and the basic moment, the critical moment is 

determined) 
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(This segment is loaded by uniform moments at its ends – basic case)  
 

Mcr1  and  Mcr2  values are plotted against 1 / band shown in Fig. 2 for the particular case 

considered with equal loading and a constant cross section throughout. 

 

It is seen that for 1 / b = 0.37, Mcr1 and Mcr2 are equal and the two segments are 

simultaneously critical. The beam will buckle with no interaction between the two 

segments. For any other value of 1 / b there will be interaction between the segments 

and the critical load would be greater than the individual values, as shown in the figure. 

For values of 1 / b  0.37, outer segments will restrain the central segment and vice-

versa when 1 / b  0.37. 
 

The safe load for a laterally continuous beam may be obtained by calculating all 

segmental critical loads individually and choosing the lowest value assuming each 

segment as simply supported at its ends. 
 

It is of interest to know the behaviour of beams, which are continuous in both transverse 

and lateral planes. Though the behaviour is similar to the laterally unrestrained beams, 

their moment patterns would be more complicated. The beam would buckle in the lateral 

plane and deflect in the vertical plane. There is a distinct difference between the points of 

contraflexure in the buckled shape and points of contraflexure in the deflected shape. 

These points will not normally occur at the same location within a span, as shown in Fig. 

3. Therefore, it is wrong to use the distance between the points of contraflexure of the 

deflected shape as the effective length for checking buckling strength. 
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4.0 EFFECTIVE LATERAL RESTRAINT 

 

Providing proper lateral bracing may increase the lateral stability of a beam. Lateral 

bracing may be either discrete (e.g. cross beams) or continuous (e.g. beam encased in 

concrete floors). The lateral buckling capacity of the beams with discrete bracing may be 

determined by using the methods described in a later Section. For the continuously 

restrained beams, assuming lateral deflection is completely prevented, design can be 

based on in-plane behaviour. It is important to note that in the hogging moment region of 

a continuous beam, if the compression flange (bottom flange) is not properly restrained, a 

form of lateral deflection with cross sectional distortion would occur. 
 

4.1     Discrete bracing 
 

In order to determine the behaviour of discrete braces, consider a simply supported beam 

provided with a single lateral support of stiffness Kb at the centroid, as shown in Fig. 4.  
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Fig. 3 Continuous beam – deflected shape and buckled shape                       
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The relationship between Kb and Mcr is shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is seen that Mcr value increases with Kb, until Kb is equal to a limiting value of Kb. The 

corresponding Mcr value is equal to the value of buckling for the two segments of the 

beam. Mcr value does not increase further as the buckling is now governed by the 

individual Mcr values of the two segments.  

 

Generally, even a light bracing has the ability to provide substantial increase in stability. 

There are several ways of arranging lateral bracing to improve stability. The limiting 

value of the lateral bracing stiffness, Kb, is influenced by the following parameters. 

 

 Level of attachment of the brace to the beam i.e. top or bottom flange. 

 The type of loading on the beam, notably the level of application of the transverse 

load  

 Type of connection, whether capable of resisting lateral and torsional deformation 

 The proportion of the beam. 

 

Provision of bracing to tension flanges is not so effective as compression flange bracing. 

Bracing provided below the point of application of the transverse load would not be able 

to resist twisting and hence full capacity of the beam is not achieved. For the design of 

effective lateral bracing systems, the following two requirements are essential.  

 

 Bracing should be of sufficient stiffness so that buckling occurs between the braces 

 Lateral bracing should have sufficient strength to withstand the force transferred by 

the beam.  

 

A general rule is that lateral bracing can be considered as fully effective if the stiffness of 

the bracing system is at least 25 times the lateral stiffness of the member to be braced. 
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Provisions in BS 5950 stipulate that adequate lateral and torsional restraints are provided 

if they are capable of resisting 1) a lateral force of not less than 1% of the maximum 

factored force in the compression flange for lateral restraints, 2) and a couple with lever 

arm equal to the depth between centroid of flanges and a force not less than 1% of the 

maximum factored compression flange force.  

 

4.2     Continuous restraint 

 

In a framed building construction, the concrete floor provides an effective continuous 

lateral restraint to the beam. As a result, the beam may be designed using in-plane 

strength. A few examples of fully restrained beams are shown in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lateral restraint to the beam is effective only after the construction of the floor is 

completed. The beam will have to be temporarily braced after its erection till concreting 

is done and it has hardened. 

 

For the case shown in Fig.6 (a), the beam is fully encased in concrete, and hence there 

will be no lateral buckling. In the arrangement shown in Fig.6 (b), the slab rests directly 

upon the beam, which is left unpainted. Full restraint is generally developed if the load 

transmitted and the area of contact between the slab and the beam are adequate to develop 

the needed restraint by friction and bond. For the case shown in Fig.6(c), the metal 

decking along with the concrete provides adequate bracing to the beam. However, the 

beam is susceptible to buckling before the placement of concrete due to the low shear 

stiffness of the sheeting. Shear studs are provided at the steel-concrete interface to 

enhance the shear resistance. The codal provisions require that for obtaining fully 

effective continuous lateral bracing, it must withstand not less than 1% of the maximum 

force in the compression flange.  

 

5.0 BUCKLING OF MONOSYMMETRIC BEAMS 
 

For beams symmetrical about the major axis only e.g. unequal flanged I- sections, the 

non-coincidence of the shear centre and the centroid complicates the torsional behaviour 

of the beam. The monosymmetric I-sections are generally more efficient in resisting loads 

provided the compressive flange stresses are taken by the larger flange. 

(a)  

Beam fully encased in 

concrete 

Friction connection 

(b) 

Beam in friction connection 

with concrete 

Concrete topping 

Light weight 

Steel Decking 

(c) 

Beam with metal decking 

Fig. 6 Beams with continuous lateral restraint 

Shear studs 
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When a monosymmetric beam is bent in its plane of symmetry and twisted, the 

longitudinal bending stresses exert a torque, which is similar to torsional buckling of 

short concentrically loaded compression members. The longitudinal stresses exert a 

torque, TM given by  

 

TM= Mx x d / dz         (3) 

 

where x = 1/ Ix 
  ydAyyx

A

 )(        (4) 

is the monosymmetry property of the cross section. Explicit expression for x for a 

monosymmetric I-section is given in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The torque developed, Tm, changes the effective torsional rigidity of the section from GJ 

to (GJ+Mx x). In doubly symmetric beams the torque exerted by the compressive 

bending stresses is completely balanced by the restoring torque due to the tensile stresses 

and therefore x is zero. In monosymmetric beams, there is an imbalance of torque due to 

larger stresses in the smaller flange, which is farther from the shear centre. Hence, when 

the smaller flange is in compression there is a reduction in the effective torsional rigidity; 
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Fig. 7 Properties of monosymmetric I-sections 
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Mxx is negative and when the smaller flange is in tension Mx x is positive. Thus, the 

principal effect of monosymmetry is that the buckling resistance is increased when the 

larger flange is in compression and decreased when the smaller flange is in compression. 

This effect is similar to the Wagner effect in columns. The value of critical moment for 

unequal flange I beam is given by.  
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
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Where   m = 
y

yc

I

I
          (6) 

Iyc is the section minor axis second moment of area of the compression flange. 

 

The monosymmetry property is approximated to   

 

x = 0.9h (2 m -1) (1 – Iy
2 / Ix

2 )              (7) 

 

and the warping  constant      by  

 

 = m (1- m) Iy h
2          (8) 

             

Very little is known of the effects of variations in the loading and the support conditions 

on the lateral stability of monosymmtric beams. However, from the available results, it is 

established that for top flange loading higher critical loads are always obtained when the 

larger flange is used as the compression flange. Similarly for bottom flange loading 

higher critical loads can be obtained when this is the larger flange. For Tee- sections x 

can be obtained by substituting the flange thickness T1 or T2 equal to zero; also for Tee 

sections the warping constant,  is zero. 

 

6.0 BUCKLING OF NON-UNIFORM BEAMS 

 

Non-uniform beams are often used in situations, where the strong axis bending moment 

varies along the length of the beam. They are found to be more efficient than beams of 

uniform sections in such situations. The non-uniformity in beams may be obtained in 

several ways. Rectangular sections generally have taper in their depths. I-beams may be 

tapered in their depths or flange widths; flange thickness is generally kept constant. 

However, steps in flange width or thickness are also common. 

 

 

Tapering of narrow rectangular beams will produce considerable reduction in minor axis 

flexural rigidity, EIy, and torsional rigidity, GJ; consequently, they have low resistance to 

lateral torsional buckling. Reduction of depth in I-beams does not affect EIy, and has only 

marginal effect on GJ. But warping rigidity, E, is considerably reduced.  Since the 

contribution of warping rigidity to buckling resistance is marginal, depth reduction does 
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not influence significantly the lateral buckling resistance of I beams. However, reduction 

in flange width causes large reduction in GJ, EIy and E. Similarly, reduction in flange 

thickness will also produce large reduction in EIy, E, and GJ in that order. For small 

degrees of taper there is little difference between width-tapered beams and thickness 

tapered beams. But for highly tapered beams, the critical loads of thickness tapered ones 

are higher. Thus, the buckling resistance varies considerably with change in the flange 

geometry.  

 

Based on the analysis of a number of beams of different cross sections with a variety of 

loading and support conditions, the elastic critical load for a tapered beam may be 

determined approximately by applying a reduction factor r to the elastic critical load for 

an equivalent uniform beam possessing the properties of the cross section at the point of 

maximum moment  

 

r = 



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
          (9) 
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Sx = section modulus. 

 

T = flange thickness. 

 

D = depth of the section. 

 

B =flange width. 

 

Subscripts 0 and 1 relate to the points of maximum and minimum moment respectively. 

 

For the design of non-uniform sections, BS 5950 provides a simple method, in which the 

properties where the moment is maximum may be used and the value of n is suitably 

adjusted. The value of n is given by 

 

n = 1.5 – 0.5 Asm / Alm  1.0        (11) 

 

Where Asm and Alm  are flange areas at the points of the smallest and largest moment, and 

m = 1.0 
 

  
7.0 BEAMS OF UNSYMMETRICAL SECTIONS 
 

The theory of lateral buckling of beams developed so far is applicable only to doubly 

symmetrical cross sections having uniform properties throughout its length. Many lateral 

buckling problems encountered in design practice belong to this category. However, 
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cases may arise where the symmetry property of the section may not be available. Such 

cases are described briefly in this Section. 
 

The basic theory can also be applied to sections symmetrical about minor axis only e.g. 

Channels and Z-sections. In this section, the shear centre is situated in the axis of 

symmetry although not at the same point as the centroid. In the case of channel and Z 

sections, instability occurs only if the loading produces pure major axis bending. The 

criterion is satisfied for the two sections if: (1) for the channel section, the load must act 

through the shear centre Fig.8 (a) and, (2) for Z-section in a direction normal to the 

horizontal principal plane [Fig.8 (b)].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

If these conditions are satisfied, Mcr of these sections can be obtained using their 

properties and the theoretical equation. The warping constant  for the sections are: 
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where, 

 h  = distance between flange centroids 

  t  =  thickness of web 

  B = total width of flange 

  T = flange thickness. 
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Fig. 8 Loading through shear centre 
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It is very difficult to obtain such loading arrangements so as to satisfy the restrictions 

mentioned above. In such cases, the behaviour may not be one of lateral stability; instead 

a combination of bending and twisting or bi-axial bending.    
 

For sections, which have symmetry about minor axis only, their shear centre does not 

coincide with the centroid. This results in complicated torsional behaviour and theoretical 

predictions are not applicable. Fig. 9 shows the instability behaviour of sections with 

flanges of varying sizes and positions (top or bottom). It can be seen from the figure that 

sections with flange in the compression region are more advantageous.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While considering the case of tapered beams, it has been established, based on lateral 

stability studies, that variation of the flange properties can cause large changes in the 

lateral buckling capacity of the beam, whereas tapering of depth has insignificant 

influence on the buckling capacity. 

 

8.0 SUMMARY 
 

In this chapter, lateral torsional buckling of some practical cases of beams have been 

explained. It is pointed out that for cantilever beams the type of restraint provided at fixed 

-end plays a significant role in their buckling capacities. Torsional restraint of the 

cantilever beam has been found to be more beneficial than lateral restraint. In the case of 

beams with equally spaced and loaded cross beams the critical moment of the main beam 

and the associated buckling mode will depend on the spacing of the cross beams. 

Requirements for effective lateral restraint have been presented. Continuous restraint 

provided by concrete floors to beams in composite constructions of buildings is 

discussed. As discussed in an earlier chapter, the local buckling effects should be taken 

into account by satisfying the minimum requirements of the member cross-section. Cases 

of monosymmetric beams and non- uniform beams are also briefly explained. Finally 
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Fig. 9 Effect of flange position and proportion on lateral stability 
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cases of beams with un-symmetric sections are discussed and concluded that beams with 

flanges in the compression zone are more advantageous from the point of view of lateral 

torsional buckling.  
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Problem I : 

                  

A propped cantilever has a span of 9.8 m.  it is loaded by cross beams 

at 4.3 m and 6.6 m from its left hand end. The ends of the beam and the 

loaded points are assumed to be fully braced laterally and torsionally. 

 

 

                   

 

 

 

 

The loads as given are factored. 

 

Design a suitable section for the beam: 

 

The bending moment diagram of the beam is as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-130 KN m 

260 kN m 

208 kN m 

4.3 m 2.3 m 3.2 m 
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Section properties of ISMB  450  are :  

                                                    

Depth D = 450 mm. 

 

Width B  = 150 mm. 

 

Web thickness t = 9.4 mm. 

 

Flange thickness T = 17.4 mm. 

 

Depth between fillets, d = 379.2 mm. 

 

 Radius of gyration about 
                                   
 Minor axis,  ry = 30.1 mm. 
 

Plastic modulus about   

major axis,  Sx = 1512.78 cm3 . 
 

  Assume fy = 250 N / mm , E =200000 N  /  mm2 , m = 1.15  
 

Py = fy / m = 250 / 1.15 = 217.4 N / mm2 

 

(1) Type of section  
 

(i) flange criterion: 

                                       

yf
where,.

T

b

.
.T

b

mm
2

B
b




















 

                                                              

                                                                           Hence o.k. 
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(ii) Web criterion: 

 

                                

ε82.95
t

d

40.3
9.4

379.2

t

d





 

                                                                                          Hence o.k. 

 

Since

plastic""asclassifiedissectiontheε82.95
t

d
and8.92

t

b
,   

 

Check for moment capacity: 

 

                                           MC  = Sx * py 

 

                                                                           =   kN.
.*.





 m 

 

Maximum applied moment   =  260 KN - m < 328.87 KN  m    

                                                                                         Hence o.k. 

 

(iii) Lateral torsional buckling: 

 

The beam length AB, BC and CD will be treated separately 

using the equivalent uniform method. 

 

Effective lengths: 

                                       AB  = 4.3 m. 

 

                                      BC  = 2.3 m. 

 

                                     CD  = 3.2 m. 
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Length LAB: 

 

                        The equivalent uniform moment should be less than the 

lateral torsional buckling resistance moment 

 

                            bMM   

 

                       where, 

                                M  is equivalent uniform moment 

 

                               Mb   is lateral torsional buckling resistance moment 

 

                         M  =  m MA 

                       

                      where, 

                               MA   is the maximum moment in the member 

 

                               m    is the equivalent  uniform moment  factor 

                       

To determine ‘m’ : 

                        m  = 0.57 + 0.33  + 0.1  2  0.43 , where = 
maxM

Mmin
 

 

                          = 0.43mthen  ,.



 

 

                     M = 0.43 *   260  =   112 kN m 
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Length LBC: 

                  = 0.9mThen  ;.



 

 

               kN*.M   m 

length LCD: 

                   =0; m = 0.57. mkN*.M    

 

For the purpose of determining the governing values, all the three 

segments are checked separately. 

 

          = 86.142
1.30

1000*3.4

ry

AB 


 

 

        x  =  .
T

D
  

  

       



.

.

.

x
  

 

        .v   

  

        LT   =  n u v   ;    u = 0.9 , n = 1.0 

 

                = 1.0 * 0.9 * 0.79 * 142.86 

 

                = 101.57 

 

Bending strength,   Pb = 117  Mpa          (for LT = 101.57) 

 

Buckling resistance moment    

Mb= mkN
*.





  
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Length AB is safe against lateral torsional buckling 

 

Length BC : 

 

                   = 41.76
1.30

2300

ry

BC 


 

 

                 x  =  .
T

D
  

 

                



.

.

.

x
  

 

v     = 0.91 

 

                LT  =  1.0 * 0.9 * 0.91 * 76.41  =  62.58 

 

Bending strength ,  pb   =  190 Mpa 

 

Buckling resistance moment Mb  

= mkN.
*.





  

 

Length BC  is safe against lateral torsional buckling 

 

Length  CD : 

 

                      =  31.106
1.30

1000*2.3

ry

CD 


 

 

                   .
T

D
x   
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4.11
25.86

106.31

x

λ
  

 

v =  0.70   

 

LT  =  1 * 0.9 * 0.7 * 106.31   =  66.97 

 

bending strength, pb  =  174 Mpa 

 

bending resistance moment  =  

 .*

 

 

                                             =  263.22  > 119  kN m 

 

Length  LCD is safe against lateral torsional buckling. 

 

There fore the section chosen ‘ISMB 450’ is o.k. 

 

The shortest segment BC, which has the most severe pattern of 

moments controls the design. 
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