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UNRESTRAINED BEAM DESIGN – I 
 

 

 

1.0   INTRODUCTION 
 

Generally, a beam resists transverse loads by bending action. In a typical building frame, 

main beams are employed to span between adjacent columns; secondary beams when 

used – transmit the floor loading on to the main beams. In general, it is necessary to 

consider only the bending effects in such cases, any torsional loading effects being 

relatively insignificant. The main forms of response to uni-axial bending of beams are 

listed in Table 1. 
 

Under increasing transverse loads, beams of category 1 [Table1] would attain their full 

plastic moment capacity. This type of behaviour has been covered in an earlier chapter. 

Two important assumptions have been made therein to achieve this ideal beam behaviour. 

They are: 
 

 The compression flange of the beam is restrained from moving laterally, and 

 Any form of local buckling is prevented. 
 

If the laterally unrestrained length of the compression flange of the beam is relatively 

long as in category 2 of Table 1, then a phenomenon, known as lateral buckling or lateral 

torsional buckling of the beam may take place. The beam would fail well before it could 

attain its full moment capacity. This phenomenon has a close similarity to the Euler 

buckling of columns, triggering collapse before attaining its squash load (full 

compressive yield load). 
 

Lateral buckling of beams has to be accounted for at all stages of construction, to 

eliminate the possibility of premature collapse of the structure or component. For 

example, in the construction of steel-concrete composite buildings, steel beams are 

designed to attain their full moment capacity based on the assumption that the flooring 

would provide the necessary lateral restraint to the beams. However, during the erection 

stage of the structure, beams may not receive as much lateral support from the floors as 

they get after the concrete hardens. Hence, at this stage, they are prone to lateral buckling, 

which has to be consciously prevented. 
 

Beams of category 3 and 4 given in Table 1 fail by local buckling, which should be 

prevented by adequate design measures, in order to achieve their capacities. The method 

of accounting for the effects of local buckling on bending strength was discussed in an 

earlier chapter.  
 

In this chapter, the conceptual behaviour of laterally unrestrained beams is described in 

detail. Various factors that influence the lateral buckling behaviour of a beam are 

explained. The design procedure for laterally unrestrained beams is also included. 
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Table 1 Main failure modes of hot-rolled beams 

 

Category Mode  Comments 

1 Excessive bending 

triggering collapse 

 This is the basic failure mode 

provided (1) the beam is prevented 

from buckling laterally,(2) the 

component elements are at least 

compact, so that they do not buckle 

locally. Such “stocky” beams will 

collapse by plastic hinge formation. 

2 Lateral torsional 

buckling of long 

beams which are 

not suitably braced 

in the lateral 

direction.(i.e. “un 

restrained” beams) 

 Failure occurs by a combination of 

lateral deflection and twist. The 

proportions of the beam, support 

conditions and the way the load is 

applied are all factors, which affect 

failure by lateral torsional buckling. 

3 Failure by local 

buckling of a 

flange in 

compression or 

web due to shear 

or web under 

compression due 

to concentrated 

loads 

 Unlikely for hot rolled sections, 

which are generally stocky. 

Fabricated box sections may 

require flange stiffening to prevent 

premature collapse.  

Web stiffening may be required for 

plate girders to prevent shear 

buckling.  

Load bearing stiffeners are 

sometimes needed under point 

loads to resist web buckling.  

 

4 Local failure by  

(1) shear yield of 

web (2) local 

crushing of web 

(3) buckling of 

thin flanges. 

 

 Shear yield can only occur in very 

short spans and suitable web 

stiffeners will have to be designed. 

 

Local crushing is possible when 

concentrated loads act on 

unstiffened thin webs. Suitable 

stiffeners can be designed. 

 

This is a problem only when very 

wide flanges are employed. 

Welding of additional flange plates 

will reduce the plate b / t ratio and 

thus flange buckling failure can be 

avoided. 

W 

W 

Box section 

Plate girder in shear 
W 

Buckling of thin flanges 

Crushing of web 

Shear yield 
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2.0           SIMILARITY OF COLUMN BUCKLING AND LATERAL BUCKLING  

         OF BEAMS 
 

It is well known that slender members under compression are prone to instability. When 

slender structural elements are loaded in their strong planes, they have a tendency to fail 

by buckling in their weaker planes. Both axially loaded columns and transversely loaded 

beams exhibit closely similar failure characteristics due to buckling.  
 

Column buckling has been dealt with in detail in an earlier chapter. In this section, lateral 

buckling of beams is described and its close similarity to column buckling is brought out. 
 

Consider a simply supported and laterally unsupported (except at ends) beam of “short-

span” subjected to incremental transverse load at its mid section as shown in Fig.1 (a). 

The beam will deflect downwards i.e. in the direction of the load [Fig. 1(b)]. 

 

 

 

 

 

 

 

 

 

 

 

The direction of the load and the direction of movement of the beam are the same. This is 

similar to a short column under axial compression. On the other hand, a “long-span” 

beam [Fig.2 (a)], when incrementally loaded will first deflect downwards, and when the 

load exceeds a particular value, it will tilt sideways due to instability of the compression 

flange and rotate about the longitudinal axis [Fig. 2(b)].  
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Fig. 1(a) Short span beam, (b) Vertical deflection of the beam. 
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Fig. 2(a) Long span beam, (b) Laterally deflected shape of the beam 
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The three positions of the beam cross-section shown in Fig. 2(b) illustrate the 

displacement and rotation that take place as the midsection of the beam undergoes lateral 

torsional buckling. The characteristic feature of lateral buckling is that the entire cross 

section rotates as a rigid disc without any cross sectional distortion. This behaviour is 

very similar to an axially compressed long column, which after initial shortening in the 

axial direction, deflects laterally when it buckles. The similarity between column 

buckling and beam buckling is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of axially loaded columns, the deflection takes place sideways and the column 

buckles in a pure flexural mode. A beam, under transverse loads, has a part of its cross 

section in compression and the other in tension. The part under compression becomes 

unstable while the tensile stresses elsewhere tend to stabilize the beam and keep it 

straight. Thus, beams when loaded exactly in the plane of the web, at a particular load, 

will fail suddenly by deflecting sideways and then twisting about its longitudinal axis 

[Fig.3]. This form of instability is more complex (compared to column instability) since 

the lateral buckling problem is 3-dimensional in nature. It involves coupled lateral 

deflection and twist i.e., when the beam deflects laterally, the applied moment exerts a 

torque about the deflected longitudinal axis, which causes the beam to twist. The bending 

moment at which a beam fails by lateral buckling when subjected to a uniform end 

moment is called its elastic critical moment (Mcr). In the case of lateral buckling of 

beams, the elastic buckling load provides a close upper limit to the load carrying capacity 

of the beam. It is clear that lateral instability is possible only if the following two 

conditions are satisfied. 
 

 The section possesses different stiffness in the two principal planes, and  

 The applied loading induces bending in the stiffer plane (about the major axis). 
 

Similar to the columns, the lateral buckling of unrestrained beams, is also a function of its 

slenderness. 
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Fig. 3 Similarity of column buckling and beam buckling 
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 3.0 INFLUENCE OF CROSS SECTIONAL SHAPE ON LATERAL 

TORSIONAL BUCKLING  

 

Structural sections are generally made up of either open or closed sections. Examples of 

open and closed sections are shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross sections, employed for columns and beams (I and channel), are usually open 

sections in which material is distributed in the flanges, i.e. away from their centroids, to 

improve their resistance to in-plane bending stresses. Open sections are also convenient 

to connect beams to adjacent members. In the ideal case, where the beams are restrained 

laterally, their bending strength about the major axis forms the principal design 

consideration. Though they possess high major axis bending strength, they are relatively 

weak in their minor axis bending and twisting. 

 

The use of open sections implies the acceptance of low torsional resistance inherent in 

them. No doubt, the high bending stiffness (EIx) available in the vertical plane would 

result in low deflection under vertical loads.  However, if the beam is loaded laterally, the 

deflections (which are governed by the lower EIy rather than the higher EIx) will be very 

much higher. From a conceptual point of view, the beam has to be regarded as an element 

having an enhanced tendency to fall over on its weak axis.  

 

In contrast, closed sections such as tubes, boxes and solid shafts have high torsional 

stiffness, often as high as 100 times that of an open section.  The hollow circular tube is 

the most efficient shape for torsional resistance, but is rarely employed as a beam element 

on account of the difficulties encountered in connecting it to the other members and 

Wide Flange Beam Channel  Angle  

Open sections 

Closed sections 

Tubular Box 

Fig. 4 Open and closed sections 
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lesser efficiency as a flexural member. The influence of sectional shapes on the lateral 

strength of a beam is further illustrated in a later Section. 

 

4.0      LATERAL TORSIONAL BUCKLING OF SYMMETRIC SECTIONS  

 

As explained earlier, when a beam fails by lateral torsional buckling, it buckles about its 

weak axis, even though it is loaded in the strong plane. The beam bends about its strong 

axis up to the critical load at which it buckles laterally [Fig. 5(a) and 5(b)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the purpose of this discussion, the lateral torsional buckling of an I-section is 

considered with the following assumptions.  

 

1. The beam is initially undistorted 

2. Its behaviour is elastic (no yielding) 

3.  It is loaded by equal and opposite end moments in the plane of the web. 

4. The loads act in the plane of the web only (there are no externally applied lateral or 

torsional loads) 

5. The beam does not have residual stresses 

6. Its ends are simply supported vertically and laterally. 
 

Obviously, in practice, the above ideal conditions are seldom met. For example, rolled 

sections invariably contain residual stresses. The effects of the deviations from the ideal 

case are discussed in a later Section. 
 

Fig. 5(a) Original beam (b) laterally buckled beam 
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The critical bending moment capacity attained by a symmetric I beam subjected to equal 

end moments undergoing lateral torsional buckling between points of lateral or torsional 

support is a function of two torsional characteristics of the specific cross-section: the pure 

torsional resistance under uniform torsion and the warping torsional resistance  

 

Mcr    =  [ (torsional resistance)2 + ( warping resistance )2]1/2   
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where,   EIy is the minor axis flexural rigidity 

             GJ  is the torsional rigidity 

                   E   is the warping rigidity  

 

The torsion that accompanies lateral buckling is always non-uniform. The critical 

bending moment, Mcr is given by Eqn.1 (a). 

 

It is evident from Eqn.1 (a) that the flexural and torsional stiffness of the member relate 

to the lateral and torsional components of the buckling deformations. The magnitude of 

the second square root term in Eqn.1 (b) is a measure of the contribution of warping to 

the resistance of the beam. In practice, this value is large for short deep girders. For long 

shallow girders with low warping stiffness,   0 and Eqn. 1(b) reduces to  

 

 

 

 

An I-section composed of very thin plates will posses very low torsional rigidity (since J 

depends on third power of thickness) and both terms under the root will be of comparable 

magnitude. The second term is negligible compared to the first for the majority of hot 

rolled sections. But light gauge sections derive most of the resistance to torsional 

deformation from the warping action. The beam length also has considerable influence 

upon the relative magnitudes of the two terms as shown in the term 2E / 2GJ. Shorter 

and deep beams (2E / 2GJ term will be large) demonstrate more warping resistance, 

whereas, the term will be small for long and shallow beams. Eqn. (1) may be rewritten in 

a simpler form as given below. 
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where  B2 = 2 G J / E             3(a) 

 

Mcr = (E Iy G J)1/2               (4) 

 

where   =  / (1+2 / B2 )1/2                           4(a) 

 

Eqn. (4) is a product of three terms: the first term, , varies with the loading and support 

conditions; the second term varies with the material properties and the shape of the beam; 

and the third term, , varies with the length of the beam.  Eqn. (4) is regarded as the basic 

equation for lateral torsional buckling of beams. The influence of the three terms 

mentioned above is discussed in the following Section.  

 

5.0          FACTORS AFFECTING LATERAL STABILITY 

 

The elastic critical moment, Mcr, as obtained in the previous Section, is applicable only to 

a beam of I section which is simply supported and subjected to end moments. This case is 

considered as the basic case for future discussion. In practical situations, support 

conditions, beam cross section, loading etc. vary from the basic case. The following 

sections elaborate on these variations and make the necessary modifications to the basic 

case for design purposes. 

 

5.1       Support conditions 

 

The lateral restraint provided by the simply supported conditions assumed in the basic 

case is the lowest and therefore Mcr is also the lowest. It is possible, by other restraint 

conditions, to obtain higher values of Mcr, for the same structural section, which would 

result in better utilization of the section and thus saving in weight of material. As lateral 

buckling involves three kinds of deformations, namely lateral bending, twisting and 

warping, it is feasible to think of various types of end conditions. But, the supports 

should either completely prevent or offer no resistance to each type of deformation. 

Solutions for partial restraint conditions are complicated. The effect of various support 

conditions is taken into account by way of a parameter called effective length, which is 

explained, in the next Section.  

 

5.2  Effective length 

 

The concept of effective length incorporates the various types of support conditions. For 

the beam with simply supported end conditions and no intermediate lateral restraint, the 

effective length is equal to the actual length between the supports. When a greater amount 

of lateral and torsional restraints is provided at supports, the effective length is less than 
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the actual length and alternatively, the length becomes more when there is less restraint. 

The effective length factor would indirectly account for the increased lateral and torsional 

rigidities provided by the restraints. As an illustration, the effective lengths appropriate 

for different end restraints according to BS 5950 are given in Table 2. The destabilizing 

factor indicated in Table 2 is explained in the next Section. 

 

          Table 2 Effective length 

 

Effective Length, e, for beams , between supports 

Conditions at supports Loading conditions 

Normal Destabilising 

Beam torsionally unrestrained 

Compression flange laterally unrestrained 

Both flanges free to rotate on plan  

 

1.2( + 2D) 

 

1.4( + 2D) 

Beam torsionally unrestrained  

Compression flange laterally unrestrained  

Compression flange only free to rotate on 

plan 

 

 

1.0( + 2D) 

 

 

1.2( + 2D) 

Beam torsionally restrained  

Compression flange laterally restrained 

Compression flange only free to rotate on 

plan 

 

 

1.0 

 

 

1.2 

Beam torsionally restrained  

Compression flange laterally restrained 

Both flanges partially free to rotate on 

plan 

(i.e. positive connections to both flanges) 

 

 

0.85 

 

 

1.0 

Beam torsionally restrained 

Compression flange laterally restrained 

Both flanges NOT free to rotate on plan 

 

0.7 

 

0.85 

 is the length of the beam between restraints 

 D  is the depth of the beam 

 

5.3 Level of application of transverse loads 

 

The lateral stability of a transversely loaded beam is dependent on the arrangement of the 

loads as well as the level of application of the loads with respect to the centroid of the 

cross section. Fig. 6 shows a centrally loaded beam experiencing either destabilising or 

restoring effect when the cross section is twisted.  

 

A load applied above the centroid of the cross section causes an additional overturning 

moment and becomes more critical than the case when the load is applied at the centroid. 

On the other hand, if the load is applied below the centroid, it produces a stabilising 

effect. Thus, a load applied below or above the centroid can change the buckling load by 
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 40%. The location of the load application has no effect if a restraint is provided at the 

load point. For example, BS 5950 takes into account the destabilising effect of top flange 

loading by using a notional effective length of 1.2 times the actual span to be used in the 

calculation of effective length (see Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Provision of intermediate lateral supports can conveniently increase the lateral stability of 

a beam.  With a central support, which is capable of preventing lateral deflection and 

twisting, the beam span is halved and each span behaves independently. As a result, the 

rigidity of the beam is considerably increased. This aspect is dealt in more detail in a later 

chapter. 

 

5.4  Influence of type of loading 
 

So far, only the basic case of beams loaded with equal and opposite end moments has 

been considered. But, in reality, loading patterns would vary widely from the basic case. 

The two reasons for studying the basic case in detail are: (1) it is analytically amenable, 

and (2) the loading condition is regarded as the most severe. Cases of moment gradient, 

where the end moments are unequal, are less prone to instability and this beneficial effect 

is taken into account by the use of “equivalent uniform moments”.  In this case, the basic 

design procedure is modified by comparing the elastic critical moment for the actual case 

with the elastic critical moment for the basic case. This process is similar to the effective 

length concept in strut problems for taking into account end fixity.  
 

5.4.1 Loading applied at points of lateral restraint 
 

While considering other loading cases, the variation of the bending moment within a 

segment (i.e. the length between two restraints) is assumed to be linear from Mmax at one 

end to Mmin at the other end as shown in Fig. 7. 
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The value of  is defined as 

 

 = Mmin / Mmax       0.10.1    

The value of  is positive for opposing moments at the ends (single curvature bending) 

and negative for moments of the same kind (double curvature bending). For a particular 

case of , the value of M at which elastic instability occurs can be expressed as a ratio 

‘m’ involving the value of Mcr for the segment i.e. the elastic critical moment for  = 1.0. 

The ratio may be expressed as a single curve in the form: 
 

m = 0.57 + 0.33 +0.1 2    0.43                                                                               (6) 
 

The quantity ‘m’ is usually referred to as the equivalent uniform moment factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The relationship is also expressed in Fig. 8. As seen from the figure, m =1.0 for uniform 

moment and m < 1.0 for non uniform moment; therefore, beam with variation of moment 

over the unsupported length is less vulnerable to lateral stability as compared to that 

subjected to uniform moment. Its value is a measure of the intensity of the actual pattern 

of moments as compared with the basic case. In many cases, its value is dependent only 

on the shape of the moment diagram and a few examples are presented in Fig.9.  
 

Mmin 

Fig. 7    Non uniform distribution of bending moment 
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Fig. 8 ‘m’ factor for equivalent uniform moment 
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A good estimate of the critical moment due to the actual loading may be found using the 

proper value of  m in the equation  
 

M = (1 / m) Mcr               (7) 
 

This approximation helps in predicting the buckling of the segments of a beam, which is 

loaded through transverse members preventing local lateral deflection and twist. Each 

segment is treated as a beam with unequal end moments and its elastic critical moments 

may be determined from the relationship given in Eqn.7. The critical moment of each 

segment can be determined and the lowest of them would give a conservative 

approximation to the actual critical moment. 
 

Beam and loads Actual bending 

moment 

Mmax m Equivalent 

uniform 

moment 

  M 1.0  

  M 0.57  

  M 0.43  

  W/4 0.74  

  W2/8 0.88  

  W/4 0.96  

 

 

 

 

It may be noted here that the values of ‘m’ apply only when the point of maximum 

moment occurs at one end of the segments of the beams with uniform cross section and 

equal flanges. In all other cases m=1.0. For intermediate values of , m can be 

determined by Eqn. 6 or can be interpolated from Fig 8. The local strength at the more 

heavily stressed end also may be checked against plastic moment capacity, Mp as in Eqn. 

8. 

W 

M M 

M 

M M 

W 

W W 

c/4 /4 

Fig. 9 Equivalent uniform moment  
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Mmax   Mp.                                     (8) 

 

5.4.2 Use of m factors in design  

 

As discussed earlier, the shape of the moment diagram influences the lateral stability of a 

beam. A beam design using uniform moment loading will be unnecessarily conservative. 

In order to account for the non-uniformity of moments, a modification of the moment 

may be made based on a comparison of the elastic critical moment for the basic case. 

This can be done in two ways. They are: 

 

(i) Use equivalent uniform moment value M  = m Mmax (Mmax is the larger of the two 

end moments)  for checking against the buckling resistance moment Mb.  

(ii) Mb  value is determined using an effective slenderness ratio ’LT = LT m . 

(where LT is the lateral torsional slenderness ratio and ’LT is the effective lateral 

torsional slenderness ratio). 

The idea of lateral torsional slenderness LT is introduced here to write the design 

capacity Mb as  

 













2

1

LTp

b f
M

M


                                                            (9) 

 

where Mp is the fully plastic moment 

 

The quantity LT is defined by 

 

 

                      Fig. 10 Moment capacity of beams 
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For a particular material (i.e particular E and py) the above equation can be considered as 

a product of c constant and  LT

cr

p

M

M
 . The quantity LT  is called as the new defined 

slenderness ratio. 

 

Buckling resistance moment, Mb is always less than the elastic critical moment, Mcr. 

Therefore, the second method is more conservative especially for low values of LT . The 

two methods are compared in Fig. 10, where for the first case Mmax is to be checked 

against Mb  / m and for the second case against Mb only. Method (i) is more suitable for 

cases where loads are applied only at points of effective lateral restraint. Here, the 

yielding is restricted to the supports; consequently, results in a small reduction in the 

lateral buckling strength. In order to avoid overstressing at one end, an additional check, 

Mmax < Mp should also be satisfied. In certain situations, maximum moment occurs 

within the span of the beam. The reduction in stiffness due to yielding would result in a 

smaller lateral buckling strength. In this case, the prediction according to method (i) 

based on the pattern of moments would not be conservative; here the method (ii) is more 

appropriate. In the second method, a correction factor n is applied to the slenderness ratio 

LT and design strength is obtained for nLT. It is clear from the above that n = m . The 

slenderness correction factor is explained in the next section. 

 

5.4.3 Slenderness correction factor 

 

For situations, where the maximum moment occurs away from a braced point, e.g. when 

the beam is uniformly loaded in the span, a modification to the slenderness, LT, may be 

used. The allowable critical stress is determined for an effective slenderness, nLT., where 

n is the slenderness correction factor, as illustrated in Fig. 11 for a few cases of loading. 

 

For design purposes, one of the above methods – either the moment correction factor 

method (m method) or slenderness correction factor method (n method) may be used. If 

suitable values are chosen for m and n, both methods yield identical results. The 

difference arises only in the way in which the correction is made; in the n factor method 

the slenderness is reduced to take advantage of the effect of the non- uniform moment, 

whereas, in the m factor method, the moment to be checked against lateral moment 

capacity, Mb, is reduced from Mmax  to M  by the factor m. It is always safe to use m = n 

=1 basing the design on uniform moment case. In any situation, either m = 1 or n= 1, i.e. 

any one method should be used. 
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Slenderness correction factor, n 

Load pattern Actual bending moment n Equivalent uniform 

moment 
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5.5  Effect of cross-sectional shape 

 

The shape of the cross-section of a beam is a very important parameter while evaluating 

its lateral buckling capacity. In other words, lateral instability can be reduced or even 

avoided by choosing appropriate sections. The effect of cross-sectional shape on lateral 

instability is illustrated in Fig. 12 for different type of section with same cross sectional 

area. 

 

The figure shows that the I-section with the larger in-plane bending stiffness does not 

have matching stability. Box sections with high torsional stiffness are most suitable for 

beams. However, I-sections are commonly used due to their easy availability and ease of 
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W 
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connections. Box sections are used as crane girders where the beam must be used in a 

laterally unsupported state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0      BUCKLING OF REAL BEAMS 
 

The theoretical assumptions made in section 4.0 are generally not realised in practice. In 

this section, the behaviour of real beams (which do not meet all the assumptions of the 

buckling theory) is explained. Effects of plasticity, residual stresses and imperfections are 

described in the following sections. 
 

6.1  Plasticity effects 
 

Initially, the case, where buckling is not elastic is considered. All other assumptions hold 

good. As the beam undergoes bending under applied loads, the axial strain distribution at 

a point in the beam varies along the depth as shown in Fig.13.  

 

With the increase in loading, yielding of the section is initiated at the outer surfaces of the 

top and bottom flanges. If the Mcr of the section as calculated by Eqn.1 is less than My, 

then the beam buckles elastically. In the case where Mcr is greater than My, some amount 

of plasticity is experienced at the outer edges before buckling is initiated. If the beam is 

sufficiently stocky, the beam section attains its full plastic moment capacity, Mp. The 

interaction between instability and plasticity is shown in Fig. 14. 
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There are three distinct regions in the curve as given below. 

1. Beams with high slenderness ( 1.2
crM

pM
). The failure of the beam is by elastic 

lateral buckling at Mcr 

2. Beams of intermediate slenderness 0.4 < 1.2
crM

pM
), where failure occurs by 

inelastic lateral buckling  at loads below Mp and above Mcr 

3. Stocky beams ( 0.4
crM

pM
)), which attain Mp without buckling.  
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Spread of yield 

(Elastic –perfectly plastic material behaviour is assumed) 

Fig 13 Strain / Stress Distribution and yielding of section 
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Modified Slenderness 
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Inelastic buckling (with 

residual stress) M<My  

           M <Mcr  
 

Fig. 14 Interaction between instability and plasticity 
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6.2         Residual stresses 

 

It is normally assumed that a structural section in the unloaded condition is free from 

stress and strain. In reality, this is not true. During the process of manufacture of steel 

sections, they are subjected to large thermal expansions resulting in yield level strains in 

the sections. As the subsequent cooling is not uniform throughout the section, self-

equilibrating patterns of stresses are formed. These stresses are known as residual 

stresses. Similar effects can also occur at the fabrication stage during welding and flame 

cutting of sections. A typical residual stress distribution in a hot rolled steel beam section 

is shown in Fig.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Due to the presence of residual stresses, yielding of the section starts at lower moments. 

Then, with the increase in moment, yielding spreads through the cross-section. The in- 

elastic range, which starts at Myr increases instead of the elastic range. The plastic 

moment value Mp is not influenced by the presence of residual stresses.  

 

6.3 Imperfections 

 

The initial distortion or lack of straightness in beams may be in the form of a lateral bow 

or twist. In addition, the applied loading may be eccentric inducing more twist to the 

beam. It is clear that these initial imperfections correspond to the two types of 

deformations that the beam undergoes during lateral buckling. Assuming Mcr  My, the 

lateral deflection and twist increase continuously from the initial stage of loading 

assuming large proportion as Mcr is reached. The additional stresses, thus produced, 

would cause failure of the beam as the maximum stress in the flange tips reaches the 

yield stress. This form of failure by limiting the stress to yield magnitude is shown in  

Fig. 16. In the case of beams of intermediate slenderness, a small amount of stress 

redistribution takes place after yielding and the prediction by the limiting stress approach  

will be conservative. If residual stresses were also included, the failure load prediction 

would be conservative even for slender beams. 
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Fig. 15 Residual stresses in  I beams 
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While studying the behaviour of beams, it is necessary to account for the combined 

effects of the various factors such as instability, plasticity, residual stresses and 

geometrical imperfections. 

 

7.0  DESIGN APPROACH 

Lateral instability is a prime design consideration for all laterally unsupported beams 

except for the very stocky ones. The value Mcr is important in assessing their load 

carrying capacity. The non-dimensional modified slenderness 
LT

λ = crp M/M  

indicates the importance of instability and as a result the governing mode of failure.  

 

For design purposes, the application of the theoretical formula is too complex. Further, 

there is much difference between the assumptions made in the theory and the real 

characteristics of the beams. However, as the theoretical prediction is elastic, it provides 

an upper bound to the true strength of the member. A non-dimensional plot with abscissa 

as crp M/M and the ordinate as M/Mp, where Mp is the plastic moment capacity of 

section and M is the failure moment shows clearly the lateral torsional behaviour of the 

beam. Such a non-dimensional plot of lateral torsional buckling moment and the elastic 

critical moment is shown in Fig 17. Experiments on beams validate the use of such a 

curve as being representative of the actual test data. 

 

Three distinct regions of behaviour may be noticed in the figure. They are:  

 Stocky, where beams attain Mp, with values of LTλ  < 0.4 

 Intermediate, the region where beams fail to reach either MP or Mcr  ; 0.4< LTλ <1.2  

 Slender, where beams fail at moment Mcr; LTλ >1.2 
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Fig. 16 Beam failure curve 
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As pointed out earlier, lateral stability is not a criterion for stocky beams. For beams of 

the second category, which comprise of the majority of available sections, design is based 

on inelastic buckling accounting for geometrical imperfections and residual stresses.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

7.1  Conservative design procedure 

 

The lateral buckling moment capacity of a section can be expressed as 

 

Mb   = pb  Sx 

                     (11 ) 

where, pb is the bending strength accounting for lateral instability 

            Sx is the appropriate plastic section modulus  

 

The slenderness of the beam LT is defined as: 

 

LT = LTλ

yp

E2π
           (12) 

 

This has close similarity to the slenderness associated with compressive buckling of a 

column. The relation between pb and LT is shown in Fig.18. 

 

In the case of slender beams, pb is related to LT . LT can be determined for a given section 

by the following relationship 

 

LT =n u v e / ry         (13) 

 

where, n is the slenderness correction factor 
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Fig 17. Theoretical elastic critical moment 

crM/pMLT   

M
 /

 M
p
 

    

  

 

 
 

 

 

 

 

 

 
 

 

 
 

 
 

 represent experimental  

      point 
       



  UNRESTRAINED BEAM DESIGN-I 

Version II 11-21 

 u is buckling parameter from steel tables (= 0.9 for rolled beams and channels and 

        1.0 for other sections) 

 

v is slenderness factor  and  f(/ry, x), given in Table 14 of BS 5950  part 1; but 

approximated to 1.0 for preliminary calculations 
 

            x is the torsional index which is provided in BS 5950  part 1 
 

x =  




JAh  0.566           for bi-symmetric sections and sections symmetric about    

                                                 minor   axis, and 

x = 









 JIHA

y
 1.132    for sections symmetric about major axis. 

 

where  

 

A  is the cross sectional area of the member. 

Iy  is the second moment of the area about the minor axis 

H  is the warping constant 

J  is the torsion constant 

h  is the distance between the  shear center of the flanges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For compact sections, full plasticity is developed at the most heavily stressed section. 

Unlike plastic design, moment redistribution is not considered here. For example, for a 

particular grade of steel and for LTλ  0.4, when pb attains the value of py, LT = 37. 

Hence, this is the value of maximum slenderness for which instability does not influence 

strength.  
 

A good design can be achieved by determining the value of LT and thereby pb more 

accurately. Mb can be determined using Eqn.11. Effective lengths of the beam may be 

adopted as per the guidelines given in Table 2. For beams, and segments of beams 

between lateral supports, equivalent uniform moments may be calculated to determine 

0 
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pb 

 N / mm2 

Fig. 18 Bending strength for rolled sections of design strength 240 N / mm2   

LT
  
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their relative severity of instability. The lateral stability is checked for an equivalent 

moment M given by 
 

 M = m Mmax          (14) 

  

where m is the equivalent uniform moment factor. 
 

If Mb > M , the section chosen is satisfactory. At the heavily stressed locations, local 

strength should be checked against development of Mp. 

 

Mmax   Mp          (15)  

 

8.0         SUMMARY 
 

Unrestrained beams that are loaded in their stiffer planes may undergo lateral torsional 

buckling. The prime factors that influence the buckling strength of beams are: the un 

braced span, cross sectional shape, type of end restraint and the distribution of moment. 

For the purpose of design, the simplified approach as given in BS: 5950 Part-1 has been 

presented. The effects of various parameters that affect buckling strength have been 

accounted for in the design by appropriate correction factors. The behaviour of real 

beams (which do not comply with the theoretical assumptions) has also been described. 

In order to increase the lateral strength of a beam, bracing of suitable stiffness and 

strength has to be provided. 
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Structural Steel 

Design Project 
 

Calculation sheet 

Job No. Sheet   1  of    4    Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 1 

 Made by.          SSR Date.1/3/2000 

Checked by.     SAJ Date.5/3/ 2000 

Problem - 1 

 

Check the adequacy of ISMB 450 to carry a uniformly distributed load 

of 24 kN / m over a span of 6 m. Both ends of the beam are attached to 

the flanges of columns by double web cleat.  

 

 

 

 

 

 

 

 

 

Design check: 

 

For the end conditions given, it is assumed that the beam is simply 

supported in a vertical plane, and at the ends the beam is fully 

restrained against lateral deflection and twist with, no rotational 

restraint in plan at its ends. 

 

Section classification of ISMB 450  
 

The properties of the section are: 

 

                                                                  Depth, D = 450 mm 

                                                     

                                                                  Width, B = 150 mm 

D 

                                                       Web thickness, t = 9.4 mm 

 

                                                 Flange thickness, T = 17.4 mm 

 

 

24 kN/m  

(factored) 

ISMB 450 

6 m 

B 

 

t 

T 
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Structural Steel 

Design Project 
 

 

Calculation sheet 

Job No. Sheet   2    of   4        Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 1 

 Made by.      SSR Date.1/3/2000 

Checked by. SAJ Date. 5/3/ 2000 

Depth between fillets, d = 379.2 mm 

 

Radius of gyration about minor axis, ry = 30.1 mm 

 

Plastic modulus about major axis, Sx = 1512.8 * 10-3 mm3 

 

 

Assume fy = 250 N/mm2, E=200000 N/mm2, m = 1.15, 

 

 py = fy / m=   250 / 1.15 = 217.4 N / mm2 

 

(I) Type of section  

 

Flange criterion: 

                             

                            b = mm75
2

150

2

B
  

                            

                           4.31
17.4

75.0

T

b
  

 

                           
yf

250
εwhere8.92ε

T

b
   

                                                                                         Hence O.K. 

 

Web criterion: 

 

                            

ε82.95
t

d

40.3
9.4

379.2

t

d





 

                                                                                          Hence O.K. 
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Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet   3  of    4      Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 1 

 Made by.       SSR Date.1/3/2000 

Checked by.  SAJ Date. 5/3/ 2000 

Since ,ε82.95
t

d
andε8.92

T

b
  the section is classified as 

‘plastic’ 

 

(II)Check for lateral torsional buckling: 

 

          Equivalent slenderness of the beam, λvunλLT   

 

         where, n = slenderness correction factor (assumed value of 1.0)  

                     

                    u = buckling parameter (assumed as 0.9)  

 

                    = slenderness of the beam along minor axis 

 

                      =  199.33
30.1

6000
  

                    

                   v = slenderness factor (which is dependent on the                        

  

                       proportion of the flanges and the torsional index [D / T]) 

 

                       = 0.71 (for equal flanges and  = 199.33) 

 

       Now,    LT = 1.0 * 0.9 * 0.71 * 199.33 

 

                                          = 127.37 

 

Bending strength, pb = 84 Mpa (for LT  = 127.37) (from Table 11 of 

BS 5950 Part I) 

 

Buckling resistance moment Mb = Sx * pb  

 

                                                   = (1512.78 * 84 )/1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14  of 

BS5950 Part I 
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Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet   4    of     4    Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 1 

 Made by.       SSR Date.1/3/2000 

Checked by.  SAJ Date. 5/3/ 2000 

                                                   = 127.07 kN m 

 

For the simply supported beam of 6.0 m span with a factored load of 

24.0 KN/m  

 

                                  
8

6*24

8

w
M

22

max 


 

 

                                               = 108.0 KN m  <  127.07  kN m 

 

                                                  Hence  Mb  >  Mmax  

 

        ISMB 450 is adequate against lateral torsional buckling. 
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Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet   1  of    5 Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 2 

 Made by.           SSR Date.23/3/2000 

Checked by.      SAJ Date.26/3/2000 

 

Problem-2 

 

 (i) A simply supported beam of span 4 m is subjected to end moments 

of 155 kN m (clockwise) and 86 k N m (anticlockwise) under factored -

applied loading. Check whether ISMB 450 is safe with regard to lateral 

buckling. 

 

 

 

 

 

 

 

 

 

 

 

Design check: 

 

For the end conditions given, it is assumed that the beam is simply 

supported in a vertical plane, and at the ends the beam is fully 

restrained against lateral deflection and twist with, no rotational 

restraint in plan at its ends. 

 

Section classification of ISMB 450  

 

The properties of the section are: 

 

                                                                    Depth, D = 450 mm. 

                                                     

                                                                    Width, B = 150 mm. 

   D 

 

                                                         Web thickness, t = 9.4 mm 

                                                    Flange thickness, T = 17.4 mm 

 

 

 

155 kN m 86 kN m 

155 kN m 86 kN m 

4 m 

B.M Diagram 

B 

 

t 

T 



  UNRESTRAINED BEAM DESIGN-I 

Version II 11-28 

 

Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet  2  of    5 Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 2 

 Made by.           SSR Date23/34/2000 

Checked by.      SAJ Date.26/3/2000 

 

Depth between fillets, d = 379.2 mm 

 

Radius of gyration about minor axis, ry = 30.1 mm 

 

 Plastic modulus about major axis, Sx = 1512.8 * 10-3 mm3  
 

Assume fy = 250 N/mm2, E=200000 N/mm2, m = 1.15, 

 

py = fy / m=   250 / 1.15 = 217.4 N / mm2 

 

(II) Type of section  

 

Flange criterion: 

                             

                            b = mm75
2

150

2

B
  

                            

                           4.31
17.4

75.0

T

b
  

 

                           
yf

250
εwhere8.92ε

T

b
   

                                                                                        Hence O.K. 

Web criterion: 

 

                            

ε82.95
t

d

40.3
9.4

379.2

t

d





 

                                                                                       Hence O.K 

 

 

 

 



  UNRESTRAINED BEAM DESIGN-I 

Version II 11-29 

 

Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet  3  of    5 Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 2 

 Made by.           SSR Date.23/3/2000 

Checked by.      SAJ Date.26/3/2000 

Since ,ε82.95
t

d
andε8.92

T

b
  the section is classified as 

‘plastic.’ Section should be plastic or compact to attain plastic 

moments. Most of the hot - rolled  sections are classified as plastic or 

compact. 

 

(II)Check for lateral torsional buckling: 

 

          Equivalent slenderness of the beam, λvunλLT   

 

         Where, n = slenderness correction factor (assumed value of 1.0)  

                     

                    u = buckling parameter (assumed as 0.9)  

 

                    = slenderness of the beam along minor axis, e/ry 

 

                      =  199.33
30.1

6000
  

                    

                   v = slenderness factor (which is dependent on the                        

  

                       proportion of the flanges and the torsional index [D / T]) 

 

                       = 0.71 (for equal flanges and  = 199.33) 

 

       Now,    LT = 1.0 * 0.9 * 0.71 * 199.33 

 

                          = 127.37 

 

Bending strength, pb = 84 Mpa (for LT  = 127.37) 

 

Buckling resistance moment Mb = Sx * pb  

                                                    = (1512.78 * 84 )/1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 of 

BS5950 Part I  

 

 

 

 

Table 11 of 

BS5950 Part I 
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Design Project 
 
 

Calculation sheet 

Job No. Sheet  4  of    5 Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 2 

 Made by.           SSR Date.23/3/2000 

Checked by.      SAJ Date.26/3/2000 

                 = 127.07 kN m 

 

 For the given beam of 4 m span, 

 

               = 86 / 155 = 0.555 

 

Using the equation to find the value of   m 

 

              m = 0.57 +0.33* 0.555 + 0.1* 0.555 2 

 

                  = 0.784 

 Equivalent uniform moment M  = 0.784 * 155 

 

                  =122 kN m 

 

         127.07 > 122. 

 

Therefore the capacity of the beam exceeds the design moment. 

                                   

“ISMB 450 is adequate against lateral torsional buckling” 

 

(ii) If the beam of problem (i) is subjected to a central load producing a 

maximum factored moment of 155 kN m check whether the beam is still 

safe. 

 

 

 

 

155 kN 

4 m 

155 kN m 

B.M Diagram 
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Structural Steel 

Design Project 
 
 

Calculation sheet 

Job No. Sheet  5  of    5 Rev. 

Job title:   UNRESTRAINED BEAM DESIGN 

Worked example: 2 

 Made by.           SSR Date.23/3/2000 

Checked by.      SAJ Date. 26/3/2000 

For this problem,  

 

m =0.74  (see Fig. 9 of the text) 

 

Therefore n =  m   =  0.74 = 0.86  (see section 5.4.2 of the text)  

 

Therefore ’
LT = nLT = 0.86 * 127.37 = 109.54      

 

pb =   105 N/mm 2  

 

Therefore Mb = 105 *1512.78 / 1000 = 158.84 kN m. 

 

Therefore the Mb > Mmax (158.84 > 155)  

 

Therefore the section ISMB 450 is adequate against lateral torsional 

buckling. 

 

 

 

 

 


	W
	W (1)
	W (2)
	W (3)
	W (4)
	W (5)
	W (6)
	W (7)
	W (8)
	Twisting
	Undeflected position
	Fig. 2(a) Long span beam, (b) Laterally deflected shape of the beam

	B
	B (1)
	P
	P (1)
	Y
	X
	Z

	Section B-B
	M
	M (1)
	Section B-B (1)
	Beam buckling
	B
	B (1)

	Wide Flange Beam
	Channel
	Angle
	Open sections
	Closed sections

	Tubular
	Box
	Fig. 4 Open and closed sections
	Standard beam
	Tee

	Fig. 5(a) Original beam (b) laterally buckled beam
	M
	Elevation

	M (1)
	Section
	Lateral Deflection

	Twisting
	A
	A (1)
	Section A-A

	Critical Value Of
	Mmax
	Mmax (1)
	Positive(
	Negative(
	Fig. 8 ‘m’ factor for equivalent uniform moment

	Mmax (2)
	Mmax (3)
	M (2)
	M (3)
	M (4)
	M (5)
	M (6)
	W (9)
	W (10)
	W (11)
	W (12)
	Fig. 9 Equivalent uniform moment

	The idea of lateral torsional slenderness (LT is introduced here to write the design capacity Mb as
	Lateral – torsional slenderness (LT
	Moment capacity factor M / Mp
	Method(ii)
	Method i
	Fig. 10 Moment capacity of beams


	W (13)
	(/4
	(/4 (1)

	6.1  Plasticity effects
	Ratio of length to depth
	Fig 13 Strain / Stress Distribution and yielding of section
	(Elastic –perfectly plastic material behaviour is assumed)
	Spread of yield
	Fig. 14 Interaction between instability and plasticity

	Moment ratio M / Mp
	Plastic failure M = Mp

	Fig. 15 Residual stresses in  I beams
	Non dimensional applied moment
	Stocky
	Intermediate
	Slender
	ISMB 450
	T
	B

	B (2)
	T
	155 kN m
	86 kN m
	155 kN m (1)
	86 kN m (1)
	B.M Diagram

