Design Example 1: Design a bolted connection between a bracket 8 mm thick and the flange of an ISHB 400 column using HSFG bolts, so as to carry a vertical load of 100 kN at a distance of 200 mm from the face of the column as shown in Fig. E1.

Solution:
1) Bolt force:

\[P_x = 0; \quad P_y = 100 \text{ kN}; \]

Total eccentricity \(x' = 200 + 250/2 = 325 \text{ mm} \)

\[M = P_y x' = 100 \times 325 = 32500 \text{ kN-mm} \]

Try the arrangement shown in Fig. E1

Note: minimum pitch = 60 mm and minimum edge dist. = 60 mm

\[n = 6 \]

\[\sum r_i^2 = \sum x_i^2 + \sum y_i^2 = 6(70)^2 + 4(60)^2 = 43800 \text{ mm}^2 \]

Shear force on the farthest bolts (corner bolts)

\[R_i = \sqrt{\left[\frac{32500 \times 60}{43800} \right]^2 + \left[\frac{100}{6} + \frac{32500 \times 70}{43800} \right]^2} = 81.79 \text{ kN} \]

2) Bolt capacity

Try M20 HSFG bolts

Bolt capacity in single shear = 1.1 \(K \mu P_o \) = 1.1 \times 0.45 \times 177 = 87.6 kN

ISHB 400 flange is thicker than the bracket plate and so bearing on the bracket plate will govern.

Bolt capacity in bearing = \(d t p_{bg} \) = 20 \times 8 \times 650 \times 10^{-3} = 104 kN

\[\therefore \text{Bolt value} = 87.6 \text{ kN} > 81.79 \text{ safe.} \]
Design Example 2: Design a bolted splice for an ISMB 450 section to transfer a factored bending moment of 150 kN-m and a factored shear of 100 kN. Assume that the flange splices carry all of the moment and that the web splice carries only the shear.

Solution:
1) Flange Splices:
 Flange force $= \frac{BM}{(D-t_f)} = \frac{150 \times 10^3}{(450-17.4)} = 346.7$ kN

 For M20 Gr.8.8 HSFG bolts in single shear
 Slip resistance per bolt $= 1.1 \times 0.45 \times 144 = 71.3$ kN
 Bearing resistance on flange per bolt $= 20 \times 17.4 \times 650 \times 10^{-3} = 226.2$ kN
 Bolt value $= 71.3$ kN

 Use 3 rows of 2 bolts at a pitch of 60 mm

 Net area of flange $= (150-2 \times 22) \times 17.4 = 1844.4$ mm2
 Flange capacity $= (250/1.15) \times 1844 \times 10^{-3} = 400.9$ kN > flange force OK

 Try 150 mm wide splice plate
 Thickness of splice plate required
 $= \frac{346.7 \times 10^3}{1.0 \times 250(150-2 \times 22)/1.15} = 15.1$ mm Use 16 mm

 Use flange splice plate of size 400×150 × 16
2) Web Splice

For M20 HSFG bolts of Gr.8.8 in double shear
Slip resistance per bolt = 2 × 1.1 × 0.45 × 144 = 142.6 kN

Try 8 mm thick web splice plates on both sides of the web.

Therefore bearing on web will govern
Bearing Resistance per bolt = 20 × 9.4 × 650 × 10^{-3} = 122.2 kN
Bolt value = 122.2 kN

Try 3 bolts at 100 mm vertical pitch and 45 mm from the center of joint.

Horizontal shear force on bolt due to moment due to eccentricity
= 100 × 45 × 100/(2 × 100^2) = 22.5 kN

Vertical Shear force per bolt = 100/3 = 33.3 kN

Resultant shear force = √((22.5^2 + 33.3^2)) = 40.2 kN < 122.2 (bolt cap) OK

Use web splice plate of size 270×160×8 - 2 nos.

Web splice plate of size 270×160×8 with 3 M20 bolts on each side of the splice.
Design Example 3: Design a bolted cover plate splice for an ISHB 200 @ 50.94 kg/m column supported by an ISHB 200 @ 47.54 kg/m column so as to transfer a factored axial load of 440 kN. The splice is near a point of lateral restraint. The ends are not prepared for full contact in bearing.

Solution:
1) Area of ISHB 200 @ 47.54 kg/m section = 4754 mm²
Area of web = (200-2 × 9) × 6.1 = 1110.2 mm²

2) Web Splice
Portion of load carried by web = 440 × 1110.2 / 4754 = 102.8 kN
For M22 HSFG bolts, 2 Nos in double shear
Shear force /bolt = 102.8 / 2 = 51.4 kN

Slip resistance /bolt = 2 × 1.1 × 0.45 × 177 = 175.2 kN
Bearing resistance /bolt = 22 × 6.1 × 650 × 10⁻³ = 87.62 kN
Bolt value = 87.62 kN > bolt force of 51.4 kN ∴ OK
End distance > 51.4 × 10⁴ / (1/3 × 6.1 × 650) = 39 mm
Also end distance > 1.4(22+1.5) = 35 mm Use 50 mm

Use 175 × 160 × 6 mm web splice plates – 2 Nos.
Flange Splice

3) Flange Splice

- **Portion of load carried by each flange** = 0.5(440-102.8) = 168.6 kN
- **For M22 HSFG bolts, 4 Nos in single shear**
 - **Shear force /bolt** = 168.6/4 = 42.15 kN

 - **Slip resistance/bolt** = 1.1 × 0.45 × 177 = 87.62 kN
 - **Bearing resistance/bolt** = 22 × 9 × 650 × 10⁻³ = 128.7 kN
 - **Bolt value** = 87.62 kN > **bolt force of** 42.15 kN :: **OK**

- **End distance** > 42.15 × 10³ / (1/3 × 9 × 650) = 21.62 mm
- **Also end distance** > 1.4(22+1.5) = 35 mm **Use 50 mm**

- **Use 325×200×10 mm flange splice with bolts at 140 mm gauge, 75 mm pitch**

<table>
<thead>
<tr>
<th>Structural Steel Design Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
</tr>
<tr>
<td>Job Title:</td>
</tr>
<tr>
<td>Worked Example - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Made by</th>
<th>Date 01-10-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRSK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Checked by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK</td>
<td></td>
</tr>
</tbody>
</table>

flange splice

325×200×10
Design Example 4: Design a Seating angle connection for an ISMB 400 beam to an ISHB 200 column so as to transfer a shear of 150 kN.

1) **Seating Angle**

The support reaction acts as a UDL over length \((b + \sqrt{3}h_2)\) on the web.

Length of bearing required at root line of beam \((b + \sqrt{3}h_2)\)

\[
V/(twp_w) = 150 \times 10^3/(8.9 \times 250/1.15) = 77.53 \text{ mm}
\]

Length of bearing on cleat = \(b = 77.53 - \sqrt{3}h_2 = 77.53 - (\sqrt{3})32.8 = 20.7 \text{ mm}\)

end clearance of beam from the face of the column \(c= 5 \text{ mm}\)

allow tolerance \(d = 5 \text{ mm}\)

minimum length of angle leg required for seating = \(b + c + d = 30.7 \text{ mm}\)

Try ISA 200×100×12 angle of length \(w = b_f = 140 \text{ mm}\)

Distance from end of bearing on cleat to root of angle \((A \text{ to } B)\)

\[= b + c + d - (r+t) \text{ of angle; assuming } r = t \text{ for angle}\]

\[= b + 5 + 5 - (2t) = 20.7 + 5 + 5 - 24 = 6.7 \text{ mm}\]

assuming the load to be uniformly distributed over the bearing length \(b\)

moment at the root of angle \(= (150/20.7) \times 6.7^2/2 = 162.6 \text{ N-m}\)

Moment capacity = \(1.2pZ = 1.2 \times (250/1.15) \times (140 \times 12^2/6) \times 10^3 = 876.5 \text{ N-m OK}\)

Note: [The maximum moment occurs to the left of point A. To account for it the section modulus is taken as \(1.2wT^2/6\) instead of \(wT^2/4\)].

Shear Capacity of outstanding leg of cleat

\[= 0.6p_r \times 0.9wT = 0.6 \times (250/1.15) \times 0.9 \times 140 \times 12 \times 10^3\]

\[= 197.2 \text{ kN} > 150 \text{ kN OK}\]

Use ISA 200×100×12
<table>
<thead>
<tr>
<th>Calculation Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Connection of seating angle to column flange
 Bolts required to resist only shear
 Try 4 bolts of 20mm dia and grade 4.6 at angle back marks</td>
</tr>
<tr>
<td>Total shear capacity = 4 \times 160 \times 245 \times 10^{-3} = 156.8 \text{kN} > 150 \text{kN} \text{ OK}</td>
</tr>
<tr>
<td>Column flange critical for bearing of bolts
 Total bearing capacity = 4 \times 418 \times 20 \times 9.0 \times 10^{-3} = 301 \text{kN} > 150 \text{kN} \text{ OK}</td>
</tr>
<tr>
<td>3) Provide nominal clip angle of ISA 50 \times 50 \times 8 at the top</td>
</tr>
</tbody>
</table>

\[
p_{10} dt_f
\]
Design Example 5: Design a bolted web cleat beam-to-column connection between an ISMB 400 beam and an ISHB 200 @ 40 kg/m column. The connection has to transfer a factored shear of 150 kN. Use bolts of diameter 20 mm and grade 4.6.

1) The recommended gauge distance for column flange is 100 mm. Therefore required angle back mark is 50 mm. Use web cleats of ISA 90x90x8 giving gauge g = 50+50+8.9 = 108.9 mm

2) Connection to web of beam - Bolt capacity
 - shear capacity of bolt in double shear = $2 \times 160 \times 245 \times 10^{-3} = 78.4$ kN
 - bearing capacity of bolt on the beam web = $418 \times 20 \times 9.0 \times 10^{-3} = 75.24$ kN
 - bolt value = 75.24 kN

Try 4 bolts as shown in the Figure with vertical pitch of 75 mm

Assuming the shear to be acting on the face of the column, its eccentricity with the centre of the bolt group will produce horizontal shear forces in the bolts in addition to the vertical shear.

- horizontal shear force on top bolt due to moment due to eccentricity $e = 150 \times 50 \times 112.5 / 2(37.5^2 + 112.5^2) = 30.0$ kN

vertical shear force per bolt = $150 / 4 = 37.5$ kN

resultant shear = $\sqrt{(30.0^2 + 37.5^2)} = 48.0$ kN < bolt value Safe!
Structural Steel Design Project

Calculation Sheet

3) **Connection to column flange: Bolt capacity**

- **Shear capacity of bolt in single shear** = $160 \times 245 \times 10^{-3} = 39.2$ kN
- **Bearing capacity of bolt on column flange** = $418 \times 20 \times 9.0 \times 10^{-3} = 75.24$ kN
- **Bolt value** = 39.2 kN

Try 6 bolts as shown in the Fig.E5 with vertical pitch of 75 mm

4) **Check bolt force**

Similar to the previous case, the shear transfer between the beam web and the angle cleats can be assumed to take place on the face of the beam web. However, unlike the previous case, no relative rotation is possible between the angle and the beam web.

Assuming centre of pressure 25 mm below top of cleat (point A),

\[
\text{Horizontal shear force on bolt due to moment due to eccentricity } e = \frac{(150 \times 50/2) \times 200}{(50^2 + 125^2 + 200^2)} = 12.9 \text{ kN}
\]

\[
\text{Vertical shear force per bolt} = \frac{150}{6} = 25.0 \text{ kN}
\]

\[
\text{Resultant shear} = \sqrt{(12.9^2 + 25.0^2)} = 28.13 \text{ kN} < \text{bolt value OK}
\]

Use 2 Nos ISA 90x90x8 of length 375 mm as angle cleats

<table>
<thead>
<tr>
<th>Made by</th>
<th>Date 01-10-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRSK</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Checked by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK</td>
<td></td>
</tr>
</tbody>
</table>

ISA 90x90x8
Length 375 mm
Design Example 6: Design a bolted end plate connection between an ISMB 400 beam and an ISHB 200 @ 40 kg/m column so as to transfer a hogging factored bending moment of 150 kN-m and a vertical factored shear of 150 kN. Use HSFG bolts of diameter 22 mm.

1) **bolt forces**
 - taking moment about the centre of the bottom flange and neglecting the contribution of bottom bolts and denoting the force in the top bolts by \(F \)
 - \(4F \times 384 = 150 \times 10^3 \)
 - \(F = 97.6 \text{ kN} \)

 - tension capacity of M22 bolt = \(0.9P_o = 159.3 \text{ kN} \)
 - allowable prying force \(Q = 159.3 - 97.6 = 61.7 \text{ kN} \)

2) **design for prying action**
 - try 30 mm thick end plate of width \(b_e = 180 \text{ mm} \)
 - distance from the centre line of bolt to prying force \(n \) is the minimum of edge distance or \(1.1T\sqrt{P_o/Py} = 1.1 \times 30 \sqrt{(2 \times 512/250)} = 55.66 \text{ mm} \)
 - \(n = 40 \text{ mm} \)
 - assuming 10 mm fillet weld,
 - distance from center line of bolt to toe of fillet weld \(b = 60-10 = 50 \text{ mm} \);

 - moment at the toe of the weld = \(Fb - Qn = 97.6 \times 50 - 61.7 \times 40 = 2412 \text{ N-m} \)

 - effective width of end plate per bolt \(w = be/2 = 180/2 = 90 \text{ mm} \)

 - moment capacity = \((250/1.15)(90 \times 30^2/4) = 4402 \text{ N-m} > 2412 \text{ N-m Safe} \)
Structural Steel Design Project

Calculation Sheet

\[
\min Q = \frac{50}{2\times40} \left[97.6 - \frac{2 \times 1.5 \times 0.587 \times 90 \times 30^4}{27 \times 40 \times 50^2} \right]
\]

\[
Q = 31.8 \text{ kN} < 61.7 \text{ kN} \quad \text{OK}
\]

3) **Check for combined shear and tension**

Shear capacity of M20 HSFG Ps l= 87.6 kN

Shear per bolt \(F_s = 150/6 = 25 \text{ kN} \)

\[
= (25.0/87.6) + (97.6+31.8)/159.3 = 0.936 < 1.0 \quad \text{Safe !}
\]
Design Example 7: Design a double web cleat connection for an ISMB 400 coped beam to an ISMB 600 main beam so as to transfer a factored load of 300 kN using HSFG bolts of 20mm diameter and grade 8.8.

Solution:
1) Connection to web of ISMB 400

For M20 Gr.8.8 HSFG bolts in double shear
Slip resistance per bolt = 2×1.1 × 0.45 × 144 = 142.6 kN
Bearing capacity of web per bolt = 20 × 8.9 × 650 × 10⁻³ = 115.7 kN
Bolt value = 115.7 kN

Try 4 bolts as shown in the Figure with vertical pitch of 80 mm

Assuming the shear to be acting on the face of the ISMB 600 web, its eccentricity with the centre of the bolt group will produce horizontal shear forces in the bolts in addition to the vertical shear.

Horizontal shear force on top bolt due to moment due to eccentricity e = (300/2)×50×112.5/(37.5²+112.5²) = 60.0 kN

Vertical shear force per bolt = 300/4 = 75.0 kN

Resultant shear = √(60²+75²) = 96.0 kN < bolt value Safe!
2) Connection to web of ISMB 600

Try 6 bolts as shown in the Figure with vertical pitch of 80 mm

For M20 Gr.8.8 HSFG bolts in single shear
Slip resistance per bolt = $1.1 \times 0.45 \times 144 = 71.28$ kN
Bearing capacity of web per bolt = $20 \times 12 \times 650 \times 10^{-3} = 156$ kN
Bolt value = 71.28 kN

Assuming center of pressure 27.5 mm below the top of the angle

Horizontal shear force on bottom bolt due to moment due to eccentricity e
$= (300/2) \times 50 \times 200/(50^2 + 125^2 + 200^2) = 25.82$ kN

Vertical shear force per bolt = $300/6 = 50.0$ kN

Resultant shear = $\sqrt{(25.82^2 + 50^2)} = 56.27$ kN < bolt value Safe!

3) Check web of ISMB 400 for block shear

Block shear capacity = shear capacity of AB + 0.5 x tensile capacity of BC
$= 0.6 \times 250 \times 0.9 \times 1.1 (3 \times 80 + 50 - 3.5 \times 22) \times 8.9 \times 10^{-3}$
$+ 0.5 \times 250 \times 1.1 (45 - 0.5 \times 22) \times 8.9 \times 10^{-3} = 323.12 > 300$ kN Safe!