NOTATIONS

Preparation of Teaching Resource Material
Sponsored by: Ministry of Steel, Government of India
Workshops for University Faculty

\(A\)
Area or Gross area of a cross section

\(A_e\)
Effective area of a section

\(A_{eff}\)
Effective area

\(A_n\)
Net area of a section

\(A_{st}\)
Area of an intermediate stiffener

\(A_t\)
Tensile stress area of a bolt

\(a\)
Effective throat size of a fillet weld

\(a_1\)
Net sectional area of connected elements

\(a_2\)
Gross sectional area of connected

\(B\)
Overall width of an element

\(b\)
Flat width of an element

\(b_{eff}\)
Effective width of a compression element

\(b_{re}\)
Reduced effective width of a sub-element

\(b_{su}\)
Effective width of an unstiffened compression element

\(C_d\)
Coefficient defining the variation of moments on a beam

\(C_T\)
Constant depending on the geometry of a T-section

\(C_W\)
Warping constant of a section

\(c\)
Distance from the end of a beam to the load or the reaction

\(D\)
Overall web depth

\(D_e\)
Equivalent depth of an intermediately stiffened web

\(D_{2}\)
Distance between the centre line of an intermediate web stiffener and the tension element

\(d\)
Diameter of a bolt or Diameter of a spot weld

\(d_0\)
Distance from the centre of a bolt to the end of an element

\(d_{eff}\)
Effective diameter of a circular plug or elongated plug weld

\(d_r\)
Recommended tip diameter of an electrode

\(d_v\)
Visible diameter of a circular plug or elongated plug weld.

\(E\)
Modulus of elasticity of steel

\(e\)
Distance between a load and a reaction

\(e_s\)
Distance between the geometric neutral axis and the effective neutral axis of a section

\(F_c\)
Applied axial compressive load

\(F_s\)
Shear force (bolts)

\(F_t\)
Applied tensile load

\(F_v\)
Shear force

\(F_w\)
Concentrated load on a web

\(f_a\)
Average stress in a flange

\(f_c\)
Applied compressive stress

\(G\)
Shear modulus of steel

\(g\)
Gauge, i.e. distance measured at right angles to the direction of stress in a member, centre-to-centre of holes in consecutive lines

\(h\)
Vertical distance between two rows of connections in channel sections

\(I\)
Second moment of area of a cross section about its critical axis

\(I_{min}\)
Minimum required second moment of area of a stiffener

\(I_s\)
Second moment of area of a multiple stiffened element

\(I_x, I_y\)
Second moment of area of a cross section about the x and y axes respectively

\(J\)
St Venant torsion constant of a section
\(K \) Buckling coefficient of an element
\(l \) Length of a member between support points
\(l_e \) Effective length of a member
\(L_w \) Length of a weld
\(M \) Applied moment on a beam
\(M_b \) Buckling resistance moment
\(M_c \) Moment capacity of a cross section
\(M_{cr} \) Critical bending moment to cause local buckling in a beam
\(M_{cx} \) Moment capacity in bending about the \(x \) axis in the absence of \(F_c \) and \(M_y \)
\(M_{cy} \) Moment capacity in bending about the \(y \) axis in the absence of \(F_c \) and \(M_x \)
\(M_{E} \) Elastic lateral buckling moment of a beam
\(M_p \) Plastic moment capacity of a section
\(M_x, M_y \) Moment about \(x \) and \(y \) axes respectively
\(M_y \) Yield moment of a section
\(N \) Number of 90 degree bends in a section
\(P_{bs} \) Bearing capacity of a bolt
\(P_c \) Buckling resistance under axial load
\(P_{cs} \) Short strut capacity
\(P_{e} \) Elastic flexural buckling load (Euler load) for a column
\(P_{ex}, P_{ey} \) Elastic flexural buckling load (Euler load) for a column about \(x \) and \(y \) axes respectively
\(P_{fs} \) Shear capacity of a fastener
\(P_{ft} \) Tensile capacity of a fastener
\(P_s \) Shear capacity of a bolt or Shear capacity of a spot weld
\(P_{T} \) Torsional buckling load of a column
\(P_{T} \) Tensile capacity of a member or connection
\(P_{TF} \) Torsional flexural buckling load of a column
\(P_v \) Shear capacity or shear buckling resistance
\(P_{w} \) Concentrated load resistance of a single web
\(P_{c} \) Compressive strength
\(P_{cr} \) Local buckling stress of an element
\(P_{o} \) Limiting compressive stress in a flat web
\(P_{v} \) Shear strength
\(P_{y} \) Design strength of steel
\(P_{w} \) Design strength of weld
\(Q \) Factor defining the effective cross-sectional area of a section
\(q_{cr} \) Shear buckling strength of a web
\(r \) Inside bend radius or Radius of gyration
\(r_{cy} \) Radius of gyration of a channel about its centroidal axis parallel to the web
\(r_i \) Radius of gyration of an I section
\(r_o \) Polar radius of gyration of a section about the shear centre
\(r_x, r_y \) Radii of gyration of a section about the \(x \) and \(y \) axes respectively
\(Z_p \) Plastic modulus of a section
\(S \) Distance between the centres of bolts normal to the line of applied force or, where there is only a single line of bolts, the width of the sheet or Leg length of a fillet weld or Standard deviation
\(S_p \) Staggered pitch, i.e. the distance, measured parallel to the direction of stress in a member, centre-to-centre of holes in consecutive lines
\(t \) Net material thickness
\(t_{s} \) Equivalent thickness of a flat element to replace a multiple stiffened element for calculation purposes
\(t_1, t_2 \) Thickness of thinner and thicker materials connected by spot welding
\(U_{s} \) Ultimate tensile strength of steel
\(u \) Deflection of a flange towards the neutral axis due to flange curling
\(W \) Total distributed load on a purlin
\(W_d \) Weight of cladding acting on a sheeting rail
\(W_{w} \) Wind load acting on a sheeting rail
\(w \) Flat width of a sub-element or Intensity of load on a beam
\(w_s \) Equivalent width of a flat element to replace a multiple stiffened element for calculation purposes
\(x_0 \) Distance from the shear centre to the centroid of a section measured along the \(x \) axis of symmetry
\(f_y \)
Yield strength of steel

\(Y_{sa} \)
Average yield strength of a cold formed section

\(Y_{sac} \)
Modified average yield strength in the presence of local buckling

\(\gamma \)
Distance of a flange from the neutral axis

\(Z_c \)
Compression modulus of a section in bending